File: wiki_example.py

package info (click to toggle)
basemap 1.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 212,272 kB
  • sloc: python: 9,541; ansic: 266; makefile: 39; sh: 23
file content (121 lines) | stat: -rw-r--r-- 4,657 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import (absolute_import, division, print_function)

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
# set up orthographic map projection with
# perspective of satellite looking down at 50N, 100W.
# use low resolution coastlines.
bmap = Basemap(projection='ortho',lat_0=45,lon_0=-100,resolution='l')
# draw coastlines, country boundaries, fill continents.
bmap.drawcoastlines(linewidth=0.25)
bmap.drawcountries(linewidth=0.25)
bmap.fillcontinents(color='coral',lake_color='aqua')
# draw the edge of the map projection region (the projection limb)
bmap.drawmapboundary(fill_color='aqua')
# draw lat/lon grid lines every 30 degrees.
bmap.drawmeridians(np.arange(0,360,30))
bmap.drawparallels(np.arange(-90,90,30))
# lat/lon coordinates of five cities.
lats=[40.02,32.73,38.55,48.25,17.29]
lons=[-105.16,-117.16,-77.00,-114.21,-88.10]
cities=['Boulder, CO','San Diego, CA',
        'Washington, DC','Whitefish, MT','Belize City, Belize']
# compute the native map projection coordinates for cities.
xc,yc = bmap(lons,lats)
# plot filled circles at the locations of the cities.
bmap.plot(xc,yc,'bo')
# plot the names of those five cities.
for name,xpt,ypt in zip(cities,xc,yc):
    plt.text(xpt+50000,ypt+50000,name,fontsize=9)
# make up some data on a regular lat/lon grid.
nlats = 73; nlons = 145; delta = 2.*np.pi/(nlons-1)
lats = (0.5*np.pi-delta*np.indices((nlats,nlons))[0,:,:])
lons = (delta*np.indices((nlats,nlons))[1,:,:])
wave = 0.75*(np.sin(2.*lats)**8*np.cos(4.*lons))
mean = 0.5*np.cos(2.*lats)*((np.sin(2.*lats))**2 + 2.)
# compute native map projection coordinates of lat/lon grid.
x, y = bmap(lons*180./np.pi, lats*180./np.pi)
# contour data over the map.
cs = bmap.contour(x,y,wave+mean,15,linewidths=1.5)
plt.title('filled continent background')

# as above, but use land-sea mask image as map background.
fig = plt.figure()
bmap.drawmapboundary()
bmap.drawmeridians(np.arange(0,360,30))
bmap.drawparallels(np.arange(-90,90,30))
# plot filled circles at the locations of the cities.
bmap.plot(xc,yc,'wo')
# plot the names of five cities.
for name,xpt,ypt in zip(cities,xc,yc):
    plt.text(xpt+50000,ypt+50000,name,fontsize=9,color='w')
# contour data over the map.
cs = bmap.contour(x,y,wave+mean,15,linewidths=1.5)
plt.title('land-sea mask background')
bmap.drawlsmask(ocean_color='aqua',land_color='coral')

# as above, but use blue marble image as map background.
fig = plt.figure()
bmap.drawmapboundary()
bmap.drawmeridians(np.arange(0,360,30))
bmap.drawparallels(np.arange(-90,90,30))
# plot filled circles at the locations of the cities.
bmap.plot(xc,yc,'wo')
# plot the names of five cities.
for name,xpt,ypt in zip(cities,xc,yc):
    plt.text(xpt+50000,ypt+50000,name,fontsize=9,color='w')
# contour data over the map.
cs = bmap.contour(x,y,wave+mean,15,linewidths=1.5)
plt.title('blue marble background')
bmap.bluemarble()

# as above, but use shaded relief image as map background.
fig = plt.figure()
bmap.drawmapboundary()
bmap.drawmeridians(np.arange(0,360,30))
bmap.drawparallels(np.arange(-90,90,30))
# plot filled circles at the locations of the cities.
bmap.plot(xc,yc,'wo')
# plot the names of five cities.
for name,xpt,ypt in zip(cities,xc,yc):
    plt.text(xpt+50000,ypt+50000,name,fontsize=9,color='w')
# contour data over the map.
cs = bmap.contour(x,y,wave+mean,15,linewidths=1.5)
plt.title('shaded relief background')
bmap.shadedrelief()

# as above, but use etopo image as map background.
fig = plt.figure()
bmap.drawmapboundary()
bmap.drawmeridians(np.arange(0,360,30))
bmap.drawparallels(np.arange(-90,90,30))
# plot filled circles at the locations of the cities.
bmap.plot(xc,yc,'wo')
# plot the names of five cities.
for name,xpt,ypt in zip(cities,xc,yc):
    plt.text(xpt+50000,ypt+50000,name,fontsize=9,color='w')
# contour data over the map.
cs = bmap.contour(x,y,wave+mean,15,linewidths=1.5)
plt.title('etopo background')
bmap.etopo()

# as above, but use etopo image as map background overlaid with
# land-sea mask image where land areas are transparent (so etopo
# image shows through over land).
fig = plt.figure()
bmap.drawmapboundary()
bmap.drawmeridians(np.arange(0,360,30))
bmap.drawparallels(np.arange(-90,90,30))
# plot filled circles at the locations of the cities.
bmap.plot(xc,yc,'wo')
# plot the names of five cities.
for name,xpt,ypt in zip(cities,xc,yc):
    plt.text(xpt+50000,ypt+50000,name,fontsize=9,color='w')
# contour data over the map.
cs = bmap.contour(x,y,wave+mean,15,linewidths=1.5)
plt.title('etopo background with oceans masked')
bmap.etopo()
bmap.drawlsmask(ocean_color='DarkBlue',land_color=(255,255,255,1))

plt.show()