File: readboundaries.py

package info (click to toggle)
basemap 1.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 212,272 kB
  • sloc: python: 9,541; ansic: 266; makefile: 39; sh: 23
file content (182 lines) | stat: -rw-r--r-- 6,651 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import sys
import numpy as np

lsd = 3

def quantize(data,least_significant_digit):
    """
    Quantize data to improve compression. data is quantized using
    around(scale*data)/scale, where scale is 2**bits, and bits is determined
    from the least_significant_digit. For example, if
    least_significant_digit=1, bits will be 4.

    This function is pure python.
    """
    precision = pow(10.,-least_significant_digit)
    exp = np.log10(precision)
    if exp < 0:
        exp = int(np.floor(exp))
    else:
        exp = int(np.ceil(exp))
    bits = np.ceil(np.log2(pow(10.,-exp)))
    scale = pow(2.,bits)
    return np.around(scale*data)/scale

def interpolate_long_segments(coords, resolution):
    lookup_thresh = {'c': 0.5, 'l':0.3, 'i':0.2, 'h':0.1, 'f':0.05}
    thresh = lookup_thresh[resolution]
    spacing = thresh / 5.0

    lons, lats = coords.T
    dist = np.hypot(np.diff(lons), np.diff(lats))

    if np.all(dist <= thresh):
        return coords

    out_lon, out_lat = [], []
    for i in np.arange(len(dist)):
        if dist[i] <= thresh:
            out_lon.append(lons[i])
            out_lat.append(lats[i])
        else:
            x = [0, dist[i]]
            new_x = np.arange(0, dist[i], spacing)
            out_lon.extend(np.interp(new_x, x, lons[i:i+2]))
            out_lat.extend(np.interp(new_x, x, lats[i:i+2]))

    out_lon.append(lons[-1])
    out_lat.append(lats[-1])
    return np.column_stack([out_lon, out_lat]).astype(coords.dtype)

def get_coast_polygons(coastfile):
    polymeta = []; polybounds = []
    lats = []; lons = []
    for line in open(coastfile):
        if line.startswith('#'):
            continue
        linesplit = line.strip().split()
        if line.startswith('>'):
            area, west, east, south, north = map(float, linesplit[5:10])
            poly_id = linesplit[-1]
            level = linesplit[3]
            polymeta.append([level,area,south,north,poly_id])
            if lons:
                #lons.append(lons[0]); lats.append(lats[0])
                b = np.empty((len(lons),2),np.float32)
                b[:,0] = lons; b[:,1] = lats
                if lsd is not None:
                    b = quantize(b,lsd)
                polybounds.append(b)
            lats = []; lons = []
            continue
        lon = float(linesplit[0])
        lat = float(linesplit[1])
        lons.append(lon); lats.append(lat)
    #lons.append(lons[0]); lats.append(lats[0])
    b = np.empty((len(lons),2),np.float32)
    b[:,0] = lons; b[:,1] = lats
    if lsd is not None:
        b = quantize(b,lsd)
    polybounds.append(b)
    polymeta2 = []
    for meta,bounds in zip(polymeta,polybounds):
        npts = bounds.shape[0]
        polymeta2.append(meta[:-1] + [npts] + [meta[-1]])
    return polybounds, polymeta2

def get_boundary_lines(bdatfile, resolution):
    lons = []; lats = []; polybounds = []
    for line in open(bdatfile):
        if line.startswith('#'): continue
        linesplit = line.split()
        if line.startswith('>'):
           if lons:
               b = np.empty((len(lons),2),np.float32)
               b[:,0] = lons; b[:,1] = lats
               b = interpolate_long_segments(b, resolution)
               if lsd is not None:
                   b = quantize(b,lsd)
               polybounds.append(b)
           lons = []; lats = []
           continue
        lon, lat = [float(val) for val in linesplit]
        lats.append(lat); lons.append(lon)
    b = np.empty((len(lons),2),np.float32)
    b[:,0] = lons; b[:,1] = lats
    b = interpolate_long_segments(b, resolution)
    if lsd is not None:
        b = quantize(b,lsd)
    polybounds.append(b)
    polymeta = []
    polybounds2 = []
    for bounds in polybounds:
        npts = bounds.shape[0]
        if npts == 2 and\
           bounds[0,0] == bounds[1,0] and\
           bounds[0,1] == bounds[1,1]: continue
        polybounds2.append(bounds)
        south = bounds[:,1].min()
        north = bounds[:,1].max()
        polymeta.append((south,north,npts))
    return polybounds2, polymeta

# read in coastline data (only those polygons whose area > area_thresh).
for resolution in ['c','l','i','h','f']:
    coastlons = []; coastlats = []; coastsegind = []; coastsegtype = []
    coastfile = 'gshhs_'+resolution+'.txt'
    countryfile = 'countries_'+resolution+'.txt'
    statefile = 'states_'+resolution+'.txt'
    riverfile = 'rivers_'+resolution+'.txt'

    poly, polymeta = get_coast_polygons(coastfile)
    f = open('../lib/mpl_toolkits/basemap/data/gshhs_'+resolution+'.dat','wb')
    f2 = open('../lib/mpl_toolkits/basemap/data/gshhsmeta_'+resolution+'.dat','w')
    offset = 0
    for p,pm in zip(poly,polymeta):
        bstring = p.tostring()
        f.write(bstring)
        typ = pm[0]; area = pm[1]; south = pm[2]; north = pm[3]; npts = pm[4]
        poly_id = pm[5]
        f2.write('%s %s %s %9.5f %9.5f %s %s %s\n' % (typ, area, npts, south, north, offset, len(bstring), poly_id))
        offset = offset + len(bstring)
    f.close()
    f2.close()

    poly, polymeta = get_boundary_lines(countryfile, resolution)
    f = open('../lib/mpl_toolkits/basemap/data/countries_'+resolution+'.dat','wb')
    f2 = open('../lib/mpl_toolkits/basemap/data/countriesmeta_'+resolution+'.dat','w')
    offset = 0
    for p,pm in zip(poly,polymeta):
        bstring = p.tostring()
        f.write(bstring)
        south,north,npts = pm[:]
        f2.write('%s %s %s %9.5f %9.5f %s %s\n' % (-1,-1,npts, south, north, offset, len(bstring)))
        offset = offset + len(bstring)
    f.close()
    f2.close()

    poly, polymeta = get_boundary_lines(statefile, resolution)
    f = open('../lib/mpl_toolkits/basemap/data/states_'+resolution+'.dat','wb')
    f2 = open('../lib/mpl_toolkits/basemap/data/statesmeta_'+resolution+'.dat','w')
    offset = 0
    for p,pm in zip(poly,polymeta):
        bstring = p.tostring()
        f.write(bstring)
        south,north,npts = pm[:]
        f2.write('%s %s %s %9.5f %9.5f %s %s\n' % (-1,-1,npts, south, north, offset, len(bstring)))
        offset = offset + len(bstring)
    f.close()
    f2.close()

    poly, polymeta = get_boundary_lines(riverfile, resolution)
    f = open('../lib/mpl_toolkits/basemap/data/rivers_'+resolution+'.dat','wb')
    f2 = open('../lib/mpl_toolkits/basemap/data/riversmeta_'+resolution+'.dat','w')
    offset = 0
    for p,pm in zip(poly,polymeta):
        bstring = p.tostring()
        f.write(bstring)
        south,north,npts = pm[:]
        f2.write('%s %s %s %9.5f %9.5f %s %s\n' % (-1,-1,npts, south, north, offset, len(bstring)))
        offset = offset + len(bstring)
    f.close()
    f2.close()