File: readboundaries_shp.py

package info (click to toggle)
basemap 1.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 212,272 kB
  • sloc: python: 9,541; ansic: 266; makefile: 39; sh: 23
file content (230 lines) | stat: -rw-r--r-- 8,452 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import numpy as np
from shapefile import Reader

lsd = 5

UTILS_DIR = os.path.dirname(os.path.abspath(__file__))
OUTPUT_DIR = os.path.join(UTILS_DIR, '..', 'lib', 'mpl_toolkits',
                          'basemap', 'data')

# Folder where GSHHG shapefiles were extracted. Change if needed
GSHHS_DIR = UTILS_DIR

def quantize(data,least_significant_digit):
    """
    quantize data to improve compression. data is quantized using
    around(scale*data)/scale, where scale is 2**bits, and bits is determined
    from the least_significant_digit. For example, if
    least_significant_digit=1, bits will be 4.

    This function is pure python.
    """
    precision = pow(10.,-least_significant_digit)
    exp = np.log10(precision)
    if exp < 0:
        exp = int(np.floor(exp))
    else:
        exp = int(np.ceil(exp))
    bits = np.ceil(np.log2(pow(10.,-exp)))
    scale = pow(2.,bits)
    return np.around(scale*data)/scale

def interpolate_long_segments(coords, resolution):
    lookup_thresh = {'c': 0.5, 'l':0.3, 'i':0.2, 'h':0.1, 'f':0.05}
    thresh = lookup_thresh[resolution]
    spacing = thresh / 5.0

    lons, lats = coords.T
    dist = np.hypot(np.diff(lons), np.diff(lats))

    if np.all(dist <= thresh):
        return coords

    out_lon, out_lat = [], []
    for i in np.arange(len(dist)):
        if dist[i] <= thresh:
            out_lon.append(lons[i])
            out_lat.append(lats[i])
        else:
            x = [0, dist[i]]
            new_x = np.arange(0, dist[i], spacing)
            out_lon.extend(np.interp(new_x, x, lons[i:i+2]))
            out_lat.extend(np.interp(new_x, x, lats[i:i+2]))

    out_lon.append(lons[-1])
    out_lat.append(lats[-1])
    return np.column_stack([out_lon, out_lat]).astype(coords.dtype)

def get_coast_polygons(resolution):
    polymeta = []; polybounds = []
    for level in [1,2,3,5]:
        filename = os.path.join(GSHHS_DIR, 'GSHHS_shp/', resolution,
                                'GSHHS_{}_L{}'.format(resolution, level))
        print filename
        shf = Reader(filename)
        fields = shf.fields
        try:
            shf.shapeRecords()
        except:
            continue
        for shprec in shf.shapeRecords():
            shp = shprec.shape; rec = shprec.record
            parts = shp.parts.tolist()
            if parts != [0]:
                print 'multipart polygon'
                raise SystemExit
            verts = shp.points
            lons, lats = list(zip(*verts))
            north = max(lats); south = min(lats)
            attdict={}
            for r,key in zip(rec,fields[1:]):
                attdict[key[0]]=r
            area = attdict['area']
            id = attdict['id']
            polymeta.append([level,area,south,north,len(lons),id])
            b = np.empty((len(lons),2),np.float32)
            b[:,0] = lons; b[:,1] = lats
            if lsd is not None:
                b = quantize(b,lsd)
            polybounds.append(b)

        # Manual fix for incorrect Antarctica polygons at full resolution
        # This issue is only present in the shapefile version and may be fixed
        # in future versions of GSHHS!
        if resolution == 'f' and level == 5:
            i = [item[-1] for item in polymeta].index('4-E')
            coords = polybounds[i][2:-1, :]
            coords = np.vstack([coords,
                                [180.0, -90.0],
                                [0.0, -90.0]]).astype(np.float32)
            polybounds[i] = coords
            polymeta[i][-2] = len(coords)

            j = [item[-1] for item in polymeta].index('4-W')
            coords = polybounds[j][3:, :]
            np.savetxt('coordinates.txt', coords)
            coords = np.vstack([coords,
                                [0.0, coords[-1][1]],
                                [0.0, -90.0],
                                [-180.0, -90.0],
                                coords[0]]).astype(np.float32)

            polybounds[j] = coords
            polymeta[j][-2] = len(coords)

    return polybounds, polymeta

def get_wdb_boundaries(resolution,level,rivers=False):
    polymeta = []; polybounds = []
    if rivers:
        filename = os.path.join(GSHHS_DIR, 'WDBII_shp', resolution,
                            'WDBII_river_{}_L{:02}'.format(resolution, level))
    else:
        filename = os.path.join(GSHHS_DIR, 'WDBII_shp', resolution,
                            'WDBII_border_{}_L{}'.format(resolution, level))
    print filename
    shf = Reader(filename)
    fields = shf.fields
    for shprec in shf.shapeRecords():
        shp = shprec.shape; rec = shprec.record
        parts = shp.parts.tolist()
        if parts != [0]:
            print 'multipart polygon'
            raise SystemExit

        verts = shp.points
        # Detect degenerate lines that are actually points...
        if len(verts) == 2 and np.allclose(verts[0], verts[1]):
            print 'Skipping degenerate line...'
            continue

        lons, lats = list(zip(*verts))
        north = max(lats); south = min(lats)
        attdict={}
        for r,key in zip(rec,fields[1:]):
            attdict[key[0]]=r
        area = -1
        poly_id = attdict['id']
        b = np.empty((len(lons),2),np.float32)
        b[:,0] = lons; b[:,1] = lats

        if not rivers:
            b = interpolate_long_segments(b, resolution)

        if lsd is not None:
            b = quantize(b,lsd)

        polymeta.append([-1,-1,south,north,len(b),poly_id])
        polybounds.append(b)

    return polybounds, polymeta

# read in coastline data (only those polygons whose area > area_thresh).
for resolution in ['c','l','i','h','f']:
    poly, polymeta = get_coast_polygons(resolution)
    f = open(os.path.join(OUTPUT_DIR, 'gshhs_'+resolution+'.dat'), 'wb')
    f2 = open(os.path.join(OUTPUT_DIR, 'gshhsmeta_'+resolution+'.dat'), 'w')
    offset = 0
    for p,pm in zip(poly,polymeta):
        typ = pm[0]; area = pm[1]; south = pm[2]; north = pm[3]; npts = pm[4]
        id = pm[5]
        bstring = p.tostring()
        f.write(bstring)
        f2.write('%s %s %s %9.5f %9.5f %s %s %s\n' % (typ, area, npts, south,\
            north, offset, len(bstring),id))
        offset = offset + len(bstring)
    f.close()
    f2.close()

for resolution in ['c','l','i','h','f']:
    poly, polymeta = get_wdb_boundaries(resolution,1)
    f = open(os.path.join(OUTPUT_DIR, 'countries_'+resolution+'.dat'), 'wb')
    f2 = open(os.path.join(OUTPUT_DIR, 'countriesmeta_'+resolution+'.dat'), 'w')
    offset = 0
    for p,pm in zip(poly,polymeta):
        typ = pm[0]; area = pm[1]; south = pm[2]; north = pm[3]; npts = pm[4]
        id = pm[5]
        bstring = p.tostring()
        f.write(bstring)
        f2.write('%s %s %s %9.5f %9.5f %s %s %s\n' % (typ, area, npts, south,\
            north, offset, len(bstring),id))
        offset = offset + len(bstring)
    f.close()
    f2.close()

for resolution in ['c','l','i','h','f']:
    poly, polymeta = get_wdb_boundaries(resolution,2)
    f = open(os.path.join(OUTPUT_DIR, 'states_'+resolution+'.dat'), 'wb')
    f2 = open(os.path.join(OUTPUT_DIR, 'statesmeta_'+resolution+'.dat'), 'w')
    offset = 0
    for p,pm in zip(poly,polymeta):
        typ = pm[0]; area = pm[1]; south = pm[2]; north = pm[3]; npts = pm[4]
        id = pm[5]
        bstring = p.tostring()
        f.write(bstring)
        f2.write('%s %s %s %9.5f %9.5f %s %s %s\n' % (typ, area, npts, south,\
            north, offset, len(bstring),id))
        offset = offset + len(bstring)
    f.close()
    f2.close()

for resolution in ['c','l','i','h','f']:
    f = open(os.path.join(OUTPUT_DIR, 'rivers_'+resolution+'.dat'), 'wb')
    f2 = open(os.path.join(OUTPUT_DIR, 'riversmeta_'+resolution+'.dat'), 'w')
    # Levels above 5 are intermittent rivers and irrigation canals.
    # They haven't been included in the past, as far as I can tell, so I'm
    # not including them here...
    offset = 0
    for level in range(1, 6):
        poly, polymeta = get_wdb_boundaries(resolution,level,rivers=True)
        for p,pm in zip(poly,polymeta):
            typ = pm[0]; area = pm[1]; south = pm[2]; north = pm[3]; npts = pm[4]
            id = pm[5]
            bstring = p.tostring()
            f.write(bstring)
            f2.write('%s %s %s %9.5f %9.5f %s %s %s\n' % (typ, area, npts, south,\
                north, offset, len(bstring),id))
            offset = offset + len(bstring)
    f.close()
    f2.close()