1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
|
/* The malloc headers and source files from the C library follow here. */
/* Declarations for `malloc' and friends.
Copyright 1990, 91, 92, 93, 95, 96 Free Software Foundation, Inc.
Written May 1989 by Mike Haertel.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; see the file COPYING.LIB. If
ot, write to the Free Software Foundation, Inc., 59 Temple Place -
Suite 330, Boston, MA 02111-1307, USA.
The author may be reached (Email) at the address mike@ai.mit.edu,
or (US mail) as Mike Haertel c/o Free Software Foundation. */
/* XXX NOTES:
1. Augment the mstats struct so we can see how many blocks for fragments
and how many blocks for large requests were allocated.
*/
/* CHANGES:
1. Reorganized the source for my benefit.
2. Integrated the range-checking code by default.
3. free(0) no longer dumps core.
4. Extended the statistics.
5. Fixed a couple of places where the stats were not kept correctly.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if defined (HAVE_STRING_H)
# include <string.h>
#else
# include <strings.h>
#endif
#if defined (HAVE_LIMITS_H)
# include <limits.h>
#endif
#if defined (HAVE_UNISTD_H)
# ifdef _MINIX
# include <sys/types.h>
# endif
# include <unistd.h>
#endif
#if defined (HAVE_STDDEF_H)
# include <stddef.h>
#endif
#include <errno.h>
#if defined (RCHECK) && !defined (botch)
# include <stdio.h>
# define STDIO_H_INCLUDED
#endif
#include "stdc.h"
#ifndef errno
extern int errno;
#endif
/* Need an autoconf test for this. */
#if __STDC__
# undef genptr_t
# define genptr_t void *
#else
# undef genptr_t
# define genptr_t char *
#endif /* !__STDC__ */
#if !defined (HAVE_MEMSET)
# define memset(s, zero, n) bzero ((s), (n))
#endif
#if !defined (HAVE_MEMCPY)
# define memcpy(d, s, n) bcopy ((s), (d), (n))
#endif
/* Cope with systems lacking `memmove'. */
#if !defined (HAVE_MEMMOVE) && !defined (memmove)
static void malloc_safe_bcopy __P ((genptr_t, genptr_t, size_t));
# define memmove(to, from, size) malloc_safe_bcopy ((from), (to), (size))
#endif
#ifndef NULL
#define NULL 0
#endif
#ifndef min
#define min(A, B) ((A) < (B) ? (A) : (B))
#endif
/* Return values for `mprobe': these are the kinds of inconsistencies that
`mcheck' enables detection of. */
enum mcheck_status
{
MCHECK_DISABLED = -1, /* Consistency checking is not turned on. */
MCHECK_OK, /* Block is fine. */
MCHECK_FREE, /* Block freed twice. */
MCHECK_HEAD, /* Memory before the block was clobbered. */
MCHECK_TAIL /* Memory after the block was clobbered. */
};
/* Statistics available to the user. */
struct mstats
{
size_t bytes_total; /* Total size of the heap. */
size_t chunks_used; /* Chunks allocated by the user. */
size_t bytes_used; /* Byte total of user-allocated chunks. */
size_t chunks_free; /* Chunks in the free list. */
size_t bytes_free; /* Byte total of chunks in the free list. */
int nmalloc; /* Total number of calls to malloc. */
int nfree; /* Total number of calls to free. */
int nrealloc; /* Total number of calls to realloc. */
int nsbrk; /* Total number of calls to sbrk. */
size_t tsbrk; /* Total number of bytes allocated via sbrk. */
int negsbrk; /* Total number of calls to sbrk with a negative arg */
size_t tnegsbrk; /* Total number of bytes returned to the kernel. */
};
#ifdef RCHECK
/* Arbitrary magical numbers. */
#define MAGICWORD 0xfedabeeb
#define MAGICFREE 0xd8675309
#define MAGICBYTE ((char) 0xd7)
#define MALLOCFLOOD ((char) 0x93)
#define FREEFLOOD ((char) 0x95)
struct hdr
{
size_t size; /* Exact size requested by user. */
u_int32_t magic; /* Magic number to check header integrity. */
};
#endif /* RCHECK */
/* Functions exported by this library. */
/* Allocate SIZE bytes of memory. */
extern genptr_t malloc __P ((size_t __size));
/* Re-allocate the previously allocated block
in genptr_t, making the new block SIZE bytes long. */
extern genptr_t realloc __P ((genptr_t __ptr, size_t __size));
/* Allocate NMEMB elements of SIZE bytes each, all initialized to 0. */
extern genptr_t calloc __P ((size_t __nmemb, size_t __size));
/* Free a block allocated by `malloc', `realloc' or `calloc'. */
extern void free __P ((genptr_t __ptr));
/* Allocate SIZE bytes allocated to ALIGNMENT bytes. */
extern genptr_t memalign __P ((size_t __alignment, size_t __size));
/* Pick up the current statistics. */
extern struct mstats mstats __P ((void));
#ifdef RCHECK
extern enum mcheck_status mprobe __P((genptr_t ptr));
#endif
/* End of exported functions. */
/* The allocator divides the heap into blocks of fixed size; large
requests receive one or more whole blocks, and small requests
receive a fragment of a block. Fragment sizes are powers of two,
and all fragments of a block are the same size. When all the
fragments in a block have been freed, the block itself is freed. */
#define BLOCKLOG 12
#define BLOCKSIZE 4096 /* 1 << BLOCKLOG */
#define BLOCKIFY(SIZE) (((SIZE) + BLOCKSIZE - 1) / BLOCKSIZE)
/* Determine the amount of memory spanned by the initial heap table
(not an absolute limit). */
#define HEAP 4194304 /* 1 << 22 */
/* Number of contiguous free blocks allowed to build up at the end of
memory before they will be returned to the system. */
#define FINAL_FREE_BLOCKS 8
/* Data structure giving per-block information. */
typedef union
{
/* Heap information for a busy block. */
struct
{
/* Zero for a large (multiblock) object, or positive giving the
logarithm to the base two of the fragment size. */
int type;
union
{
struct
{
size_t nfree; /* Free frags in a fragmented block. */
size_t first; /* First free fragment of the block. */
} frag;
/* For a large object, in its first block, this has the number
of blocks in the object. In the other blocks, this has a
negative number which says how far back the first block is. */
ptrdiff_t size;
} info;
} busy;
/* Heap information for a free block (that may be the first of a
free cluster). */
struct
{
size_t size; /* Size (in blocks) of a free cluster. */
size_t next; /* Index of next free cluster. */
size_t prev; /* Index of previous free cluster. */
} free;
} malloc_info;
/* Pointer to first block of the heap. */
static char *_heapbase;
/* Table indexed by block number giving per-block information. */
static malloc_info *_heapinfo;
/* Address to block number and vice versa. */
#define BLOCK(A) (((char *) (A) - _heapbase) / BLOCKSIZE + 1)
#define ADDRESS(B) ((genptr_t) (((B) - 1) * BLOCKSIZE + _heapbase))
/* Number of info entries. */
static size_t heapsize;
/* Current search index for the heap table. */
static size_t _heapindex;
/* Limit of valid info table indices. */
static size_t _heaplimit;
/* Doubly linked lists of free fragments. */
struct list
{
struct list *next;
struct list *prev;
};
/* Free list headers for each fragment size. */
static struct list _fraghead[BLOCKLOG];
/* List of blocks allocated with `memalign'. */
struct alignlist
{
struct alignlist *next;
genptr_t aligned; /* The address that memaligned returned. */
genptr_t exact; /* The address that malloc returned. */
};
/* List of blocks allocated by memalign. */
static struct alignlist *_aligned_blocks = NULL;
/* Internal versions of `malloc', `realloc', and `free'
used when these functions need to call each other. */
static genptr_t imalloc __P ((size_t __size));
static genptr_t irealloc __P ((genptr_t __ptr, size_t __size));
static void ifree __P ((genptr_t __ptr));
/* Given an address in the middle of a malloc'd object,
return the address of the beginning of the object. */
static genptr_t malloc_find_object_address __P ((genptr_t __ptr));
/* Underlying allocation function; successive calls should
return contiguous pieces of memory. */
static genptr_t default_morecore __P ((ptrdiff_t __size));
/* Number of extra blocks to get each time we ask for more core.
This reduces the frequency of calling `default_morecore'. */
static size_t malloc_extra_blocks;
/* Nonzero if `malloc' has been called and done its initialization. */
static int malloc_initialized;
/* Function called to initialize malloc data structures. */
static int malloc_initialize __P ((void));
#ifdef RCHECK
static void zmemset __P((genptr_t, int, size_t));
static enum mcheck_status checkhdr __P((const struct hdr *));
static void mabort __P((enum mcheck_status));
#endif
/* Instrumentation. */
static size_t chunks_used;
static size_t bytes_used;
static size_t chunks_free;
static size_t bytes_free;
static int nmalloc, nfree, nrealloc;
static int nsbrk;
static size_t tsbrk;
static int negsbrk;
static size_t tnegsbrk;
/* Aligned allocation. */
static genptr_t
align (size)
size_t size;
{
genptr_t result;
unsigned long int adj;
result = default_morecore (size);
adj = (unsigned long int) ((unsigned long int) ((char *) result -
(char *) NULL)) % BLOCKSIZE;
if (adj != 0)
{
genptr_t new;
adj = BLOCKSIZE - adj;
new = default_morecore (adj);
result = (char *) result + adj;
}
return result;
}
/* Get SIZE bytes, if we can get them starting at END.
Return the address of the space we got.
If we cannot get space at END, fail and return -1. */
static genptr_t
get_contiguous_space (size, position)
ptrdiff_t size;
genptr_t position;
{
genptr_t before;
genptr_t after;
before = default_morecore (0);
/* If we can tell in advance that the break is at the wrong place,
fail now. */
if (before != position)
return 0;
/* Allocate SIZE bytes and get the address of them. */
after = default_morecore (size);
if (!after)
return 0;
/* It was not contiguous--reject it. */
if (after != position)
{
default_morecore (- size);
return 0;
}
return after;
}
/* This is called when `_heapinfo' and `heapsize' have just
been set to describe a new info table. Set up the table
to describe itself and account for it in the statistics. */
inline static void
register_heapinfo ()
{
size_t block, blocks;
block = BLOCK (_heapinfo);
blocks = BLOCKIFY (heapsize * sizeof (malloc_info));
/* Account for the _heapinfo block itself in the statistics. */
bytes_used += blocks * BLOCKSIZE;
++chunks_used;
/* Describe the heapinfo block itself in the heapinfo. */
_heapinfo[block].busy.type = 0;
_heapinfo[block].busy.info.size = blocks;
/* Leave back-pointers for malloc_find_address. */
while (--blocks > 0)
_heapinfo[block + blocks].busy.info.size = -blocks;
}
/* Set everything up and remember that we have. */
static int
malloc_initialize ()
{
if (malloc_initialized)
return 0;
heapsize = HEAP / BLOCKSIZE;
_heapinfo = (malloc_info *) align (heapsize * sizeof (malloc_info));
if (_heapinfo == NULL)
return 0;
memset (_heapinfo, 0, heapsize * sizeof (malloc_info));
_heapinfo[0].free.size = 0;
_heapinfo[0].free.next = _heapinfo[0].free.prev = 0;
_heapindex = 0;
_heapbase = (char *) _heapinfo;
_heaplimit = BLOCK (_heapbase + heapsize * sizeof (malloc_info));
register_heapinfo ();
malloc_initialized = 1;
return 1;
}
/* Allocate INCREMENT more bytes of data space,
and return the start of data space, or NULL on errors.
If INCREMENT is negative, shrink data space. */
static genptr_t
default_morecore (increment)
ptrdiff_t increment;
{
genptr_t result;
nsbrk++;
tsbrk += increment;
if (increment < 0)
{
negsbrk++;
tnegsbrk += -increment;
}
result = (genptr_t) sbrk (increment);
if ((long)result == -1L)
return NULL;
return result;
}
static int morecore_recursing;
/* Get neatly aligned memory, initializing or
growing the heap info table as necessary. */
static genptr_t
morecore (size)
size_t size;
{
genptr_t result;
malloc_info *newinfo, *oldinfo;
size_t newsize;
if (morecore_recursing)
/* Avoid recursion. The caller will know how to handle a null return. */
return NULL;
result = align (size);
if (result == NULL)
return NULL;
/* Check if we need to grow the info table. */
if ((size_t) BLOCK ((char *) result + size) > heapsize)
{
/* Calculate the new _heapinfo table size. We do not account for the
added blocks in the table itself, as we hope to place them in
existing free space, which is already covered by part of the
existing table. */
newsize = heapsize;
do
newsize <<= 1;
while ((size_t) BLOCK ((char *) result + size) > newsize);
/* We must not reuse existing core for the new info table when called
from realloc in the case of growing a large block, because the
block being grown is momentarily marked as free. In this case
_heaplimit is zero so we know not to reuse space for internal
allocation. */
if (_heaplimit != 0)
{
/* First try to allocate the new info table in core we already
have, in the usual way using realloc. If realloc cannot
extend it in place or relocate it to existing sufficient core,
we will get called again, and the code above will notice the
`morecore_recursing' flag and return null. */
int save = errno; /* Don't want to clobber errno with ENOMEM. */
morecore_recursing = 1;
newinfo = (malloc_info *) irealloc (_heapinfo, newsize * sizeof (malloc_info));
morecore_recursing = 0;
if (newinfo == NULL)
errno = save;
else
{
/* We found some space in core, and realloc has put the old
table's blocks on the free list. Now zero the new part
of the table and install the new table location. */
memset (&newinfo[heapsize], 0, (newsize - heapsize) * sizeof (malloc_info));
_heapinfo = newinfo;
heapsize = newsize;
goto got_heap;
}
}
/* Allocate new space for the malloc info table. */
while (1)
{
newinfo = (malloc_info *) align (newsize * sizeof (malloc_info));
/* Did it fail? */
if (newinfo == NULL)
{
default_morecore (-size);
return NULL;
}
/* Is it big enough to record status for its own space?
If so, we win. */
if ((size_t) BLOCK ((char *) newinfo + newsize * sizeof (malloc_info)) < newsize)
break;
/* Must try again. First give back most of what we just got. */
default_morecore (- newsize * sizeof (malloc_info));
newsize *= 2;
}
/* Copy the old table to the beginning of the new,
and zero the rest of the new table. */
memcpy (newinfo, _heapinfo, heapsize * sizeof (malloc_info));
memset (&newinfo[heapsize], 0, (newsize - heapsize) * sizeof (malloc_info));
oldinfo = _heapinfo;
_heapinfo = newinfo;
heapsize = newsize;
register_heapinfo ();
/* Reset _heaplimit so ifree never decides
it can relocate or resize the info table. */
_heaplimit = 0;
ifree (oldinfo);
/* The new heap limit includes the new table just allocated. */
_heaplimit = BLOCK ((char *) newinfo + heapsize * sizeof (malloc_info));
return result;
}
got_heap:
_heaplimit = BLOCK ((char *) result + size);
return result;
}
/* Allocate memory from the heap. */
static genptr_t
imalloc (size)
size_t size;
{
genptr_t result;
size_t block, blocks, lastblocks, start;
register size_t i;
struct list *next;
/* ANSI C allows `malloc (0)' to either return NULL, or to return a
valid address you can realloc and free (though not dereference).
It turns out that some extant code (sunrpc, at least Ultrix's version)
expects `malloc (0)' to return non-NULL and breaks otherwise.
Be compatible. */
#if 0
if (size == 0)
return NULL;
#endif
if (size < sizeof (struct list))
size = sizeof (struct list);
#ifdef SUNOS_LOCALTIME_BUG
if (size < 16)
size = 16;
#endif
/* Determine the allocation policy based on the request size. */
if (size <= BLOCKSIZE / 2)
{
/* Small allocation to receive a fragment of a block.
Determine the logarithm to base two of the fragment size. */
register size_t log = 1;
--size;
while ((size /= 2) != 0)
++log;
/* Look in the fragment lists for a
free fragment of the desired size. */
next = _fraghead[log].next;
if (next != NULL)
{
/* There are free fragments of this size.
Pop a fragment out of the fragment list and return it.
Update the block's nfree and first counters. */
result = (genptr_t) next;
next->prev->next = next->next;
if (next->next != NULL)
next->next->prev = next->prev;
block = BLOCK (result);
if (--_heapinfo[block].busy.info.frag.nfree != 0)
_heapinfo[block].busy.info.frag.first = (unsigned long int)
((unsigned long int) ((char *) next->next - (char *) NULL)
% BLOCKSIZE) >> log;
/* Update the statistics. */
++chunks_used;
bytes_used += 1 << log;
--chunks_free;
bytes_free -= 1 << log;
}
else
{
/* No free fragments of the desired size, so get a new block
and break it into fragments, returning the first. */
result = imalloc (BLOCKSIZE);
if (result == NULL)
return NULL;
/* Link all fragments but the first into the free list. */
next = (struct list *) ((char *) result + (1 << log));
next->next = NULL;
next->prev = &_fraghead[log];
_fraghead[log].next = next;
for (i = 2; i < (size_t) (BLOCKSIZE >> log); ++i)
{
next = (struct list *) ((char *) result + (i << log));
next->next = _fraghead[log].next;
next->prev = &_fraghead[log];
next->prev->next = next;
next->next->prev = next;
}
/* Initialize the nfree and first counters for this block. */
block = BLOCK (result);
_heapinfo[block].busy.type = log;
_heapinfo[block].busy.info.frag.nfree = i - 1;
_heapinfo[block].busy.info.frag.first = i - 1;
chunks_free += (BLOCKSIZE >> log) - 1;
bytes_free += BLOCKSIZE - (1 << log);
bytes_used -= BLOCKSIZE - (1 << log);
}
}
else
{
/* Large allocation to receive one or more blocks.
Search the free list in a circle starting at the last place visited.
If we loop completely around without finding a large enough
space we will have to get more memory from the system. */
blocks = BLOCKIFY (size);
start = block = _heapindex;
while (_heapinfo[block].free.size < blocks)
{
block = _heapinfo[block].free.next;
if (block == start)
{
/* Need to get more from the system. Get a little extra. */
size_t wantblocks = blocks + malloc_extra_blocks;
block = _heapinfo[0].free.prev;
lastblocks = _heapinfo[block].free.size;
/* Check to see if the new core will be contiguous with the
final free block; if so we don't need to get as much. */
if (_heaplimit != 0 && block + lastblocks == _heaplimit &&
/* We can't do this if we will have to make the heap info
table bigger to accomodate the new space. */
block + wantblocks <= heapsize &&
get_contiguous_space ((wantblocks - lastblocks) * BLOCKSIZE,
ADDRESS (block + lastblocks)))
{
/* We got it contiguously. Which block we are extending
(the `final free block' referred to above) might have
changed, if it got combined with a freed info table. */
block = _heapinfo[0].free.prev;
_heapinfo[block].free.size += (wantblocks - lastblocks);
bytes_free += (wantblocks - lastblocks) * BLOCKSIZE;
_heaplimit += wantblocks - lastblocks;
continue;
}
result = morecore (wantblocks * BLOCKSIZE);
if (result == NULL)
return NULL;
block = BLOCK (result);
/* Put the new block at the end of the free list. */
_heapinfo[block].free.size = wantblocks;
_heapinfo[block].free.prev = _heapinfo[0].free.prev;
_heapinfo[block].free.next = 0;
_heapinfo[0].free.prev = block;
_heapinfo[_heapinfo[block].free.prev].free.next = block;
++chunks_free;
bytes_free += wantblocks * BLOCKSIZE;
/* Now loop to use some of that block for this allocation. */
}
}
/* At this point we have found a suitable free list entry.
Figure out how to remove what we need from the list. */
result = ADDRESS (block);
if (_heapinfo[block].free.size > blocks)
{
/* The block we found has a bit left over,
so relink the tail end back into the free list. */
_heapinfo[block + blocks].free.size
= _heapinfo[block].free.size - blocks;
_heapinfo[block + blocks].free.next
= _heapinfo[block].free.next;
_heapinfo[block + blocks].free.prev
= _heapinfo[block].free.prev;
_heapinfo[_heapinfo[block].free.prev].free.next
= _heapinfo[_heapinfo[block].free.next].free.prev
= _heapindex = block + blocks;
}
else
{
/* The block exactly matches our requirements,
so just remove it from the list. */
_heapinfo[_heapinfo[block].free.next].free.prev
= _heapinfo[block].free.prev;
_heapinfo[_heapinfo[block].free.prev].free.next
= _heapindex = _heapinfo[block].free.next;
--chunks_free;
}
_heapinfo[block].busy.type = 0;
_heapinfo[block].busy.info.size = blocks;
++chunks_used;
bytes_used += blocks * BLOCKSIZE;
bytes_free -= blocks * BLOCKSIZE;
/* Mark all the blocks of the object just allocated except for the
first with a negative number so you can find the first block by
adding that adjustment. */
while (--blocks > 0)
_heapinfo[block + blocks].busy.info.size = -blocks;
}
return result;
}
genptr_t
malloc (size)
size_t size;
{
#ifdef RCHECK
struct hdr *hdr;
#endif
nmalloc++;
if (malloc_initialized == 0 && malloc_initialize () == 0)
return NULL;
#ifdef RCHECK
hdr = (struct hdr *) imalloc (sizeof (struct hdr) + size + 1);
if (hdr == NULL)
return NULL;
hdr->size = size;
hdr->magic = MAGICWORD;
((char *) &hdr[1])[size] = MAGICBYTE;
zmemset ((genptr_t) (hdr + 1), MALLOCFLOOD, size);
return (genptr_t) (hdr + 1);
#else
return (imalloc (size));
#endif
}
/* Free a block of memory allocated by `malloc'. */
/* Return memory to the heap. */
static void
ifree (ptr)
genptr_t ptr;
{
int type;
size_t block, blocks;
register size_t i;
struct list *prev, *next;
genptr_t curbrk;
size_t lesscore_threshold;
register struct alignlist *l;
if (ptr == NULL)
return;
/* Threshold of free space at which we will return some to the system. */
lesscore_threshold = FINAL_FREE_BLOCKS + 2 * malloc_extra_blocks;
for (l = _aligned_blocks; l != NULL; l = l->next)
if (l->aligned == ptr)
{
l->aligned = NULL; /* Mark the slot in the list as free. */
ptr = l->exact;
break;
}
block = BLOCK (ptr);
type = _heapinfo[block].busy.type;
switch (type)
{
case 0:
/* Get as many statistics as early as we can. */
--chunks_used;
bytes_used -= _heapinfo[block].busy.info.size * BLOCKSIZE;
bytes_free += _heapinfo[block].busy.info.size * BLOCKSIZE;
/* Find the free cluster previous to this one in the free list.
Start searching at the last block referenced; this may benefit
programs with locality of allocation. */
i = _heapindex;
if (i > block)
while (i > block)
i = _heapinfo[i].free.prev;
else
{
do
i = _heapinfo[i].free.next;
while (i > 0 && i < block);
i = _heapinfo[i].free.prev;
}
/* Determine how to link this block into the free list. */
if (block == i + _heapinfo[i].free.size)
{
/* Coalesce this block with its predecessor. */
_heapinfo[i].free.size += _heapinfo[block].busy.info.size;
block = i;
}
else
{
/* Really link this block back into the free list. */
_heapinfo[block].free.size = _heapinfo[block].busy.info.size;
_heapinfo[block].free.next = _heapinfo[i].free.next;
_heapinfo[block].free.prev = i;
_heapinfo[i].free.next = block;
_heapinfo[_heapinfo[block].free.next].free.prev = block;
++chunks_free;
}
/* Now that the block is linked in, see if we can coalesce it
with its successor (by deleting its successor from the list
and adding in its size). */
if (block + _heapinfo[block].free.size == _heapinfo[block].free.next)
{
_heapinfo[block].free.size
+= _heapinfo[_heapinfo[block].free.next].free.size;
_heapinfo[block].free.next
= _heapinfo[_heapinfo[block].free.next].free.next;
_heapinfo[_heapinfo[block].free.next].free.prev = block;
--chunks_free;
}
/* How many trailing free blocks are there now? */
blocks = _heapinfo[block].free.size;
/* Where is the current end of accessible core? */
curbrk = default_morecore (0);
if (_heaplimit != 0 && curbrk == ADDRESS (_heaplimit))
{
/* The end of the malloc heap is at the end of accessible core.
It's possible that moving _heapinfo will allow us to
return some space to the system. */
size_t info_block = BLOCK (_heapinfo);
size_t info_blocks = _heapinfo[info_block].busy.info.size;
size_t prev_block = _heapinfo[block].free.prev;
size_t prev_blocks = _heapinfo[prev_block].free.size;
size_t next_block = _heapinfo[block].free.next;
size_t next_blocks = _heapinfo[next_block].free.size;
if (/* Win if this block being freed is last in core, the info table
is just before it, the previous free block is just before the
info table, and the two free blocks together form a useful
amount to return to the system. */
(block + blocks == _heaplimit &&
info_block + info_blocks == block &&
prev_block != 0 && prev_block + prev_blocks == info_block &&
blocks + prev_blocks >= lesscore_threshold) ||
/* Nope, not the case. We can also win if this block being
freed is just before the info table, and the table extends
to the end of core or is followed only by a free block,
and the total free space is worth returning to the system. */
(block + blocks == info_block &&
((info_block + info_blocks == _heaplimit &&
blocks >= lesscore_threshold) ||
(info_block + info_blocks == next_block &&
next_block + next_blocks == _heaplimit &&
blocks + next_blocks >= lesscore_threshold)))
)
{
malloc_info *newinfo;
size_t oldlimit = _heaplimit;
/* Free the old info table, clearing _heaplimit to avoid
recursion into this code. We don't want to return the
table's blocks to the system before we have copied them to
the new location. */
_heaplimit = 0;
ifree (_heapinfo);
_heaplimit = oldlimit;
/* Tell malloc to search from the beginning of the heap for
free blocks, so it doesn't reuse the ones just freed. */
_heapindex = 0;
/* Allocate new space for the info table and move its data. */
newinfo = (malloc_info *) imalloc (info_blocks
* BLOCKSIZE);
memmove (newinfo, _heapinfo, info_blocks * BLOCKSIZE);
_heapinfo = newinfo;
/* We should now have coalesced the free block with the
blocks freed from the old info table. Examine the entire
trailing free block to decide below whether to return some
to the system. */
block = _heapinfo[0].free.prev;
blocks = _heapinfo[block].free.size;
}
/* Now see if we can return stuff to the system. */
if (block + blocks == _heaplimit && blocks >= lesscore_threshold)
{
register size_t bytes = blocks * BLOCKSIZE;
_heaplimit -= blocks;
default_morecore (-bytes);
_heapinfo[_heapinfo[block].free.prev].free.next
= _heapinfo[block].free.next;
_heapinfo[_heapinfo[block].free.next].free.prev
= _heapinfo[block].free.prev;
block = _heapinfo[block].free.prev;
--chunks_free;
bytes_free -= bytes;
}
}
/* Set the next search to begin at this block. */
_heapindex = block;
break;
default:
/* Do some of the statistics. */
--chunks_used;
bytes_used -= 1 << type;
++chunks_free;
bytes_free += 1 << type;
/* Get the address of the first free fragment in this block. */
prev = (struct list *) ((char *) ADDRESS (block) +
(_heapinfo[block].busy.info.frag.first << type));
if (_heapinfo[block].busy.info.frag.nfree == (BLOCKSIZE >> type) - 1)
{
/* If all fragments of this block are free, remove them
from the fragment list and free the whole block. */
next = prev;
for (i = 1; i < (size_t) (BLOCKSIZE >> type); ++i)
next = next->next;
prev->prev->next = next;
if (next != NULL)
next->prev = prev->prev;
_heapinfo[block].busy.type = 0;
_heapinfo[block].busy.info.size = 1;
/* Keep the statistics accurate. */
++chunks_used;
bytes_used += BLOCKSIZE;
chunks_free -= BLOCKSIZE >> type;
bytes_free -= BLOCKSIZE;
ifree (ADDRESS (block));
}
else if (_heapinfo[block].busy.info.frag.nfree != 0)
{
/* If some fragments of this block are free, link this
fragment into the fragment list after the first free
fragment of this block. */
next = (struct list *) ptr;
next->next = prev->next;
next->prev = prev;
prev->next = next;
if (next->next != NULL)
next->next->prev = next;
++_heapinfo[block].busy.info.frag.nfree;
}
else
{
/* No fragments of this block are free, so link this
fragment into the fragment list and announce that
it is the first free fragment of this block. */
prev = (struct list *) ptr;
_heapinfo[block].busy.info.frag.nfree = 1;
_heapinfo[block].busy.info.frag.first = (unsigned long int)
((unsigned long int) ((char *) ptr - (char *) NULL)
% BLOCKSIZE >> type);
prev->next = _fraghead[type].next;
prev->prev = &_fraghead[type];
prev->prev->next = prev;
if (prev->next != NULL)
prev->next->prev = prev;
}
break;
}
}
/* Return memory to the heap. */
void
free (ptr)
genptr_t ptr;
{
#ifdef RCHECK
struct hdr *hdr;
#endif
nfree++;
if (ptr == 0)
return;
#ifdef RCHECK
hdr = ((struct hdr *) ptr) - 1;
checkhdr (hdr);
hdr->magic = MAGICFREE;
zmemset (ptr, FREEFLOOD, hdr->size);
ifree (hdr);
#else
ifree (ptr);
#endif
}
/* Change the size of a block allocated by `malloc'. */
#ifndef HAVE_MEMMOVE
/* Snarfed directly from Emacs src/dispnew.c:
XXX Should use system bcopy if it handles overlap. */
/* Like bcopy except never gets confused by overlap. */
static void
malloc_safe_bcopy (afrom, ato, size)
genptr_t afrom;
genptr_t ato;
size_t size;
{
char *from, *to;
from = afrom;
to = ato;
if (size <= 0 || from == to)
return;
/* If the source and destination don't overlap, then bcopy can
handle it. If they do overlap, but the destination is lower in
memory than the source, we'll assume bcopy can handle that. */
if (to < from || from + size <= to)
bcopy (from, to, size);
/* Otherwise, we'll copy from the end. */
else
{
register char *endf = from + size;
register char *endt = to + size;
/* If TO - FROM is large, then we should break the copy into
nonoverlapping chunks of TO - FROM bytes each. However, if
TO - FROM is small, then the bcopy function call overhead
makes this not worth it. The crossover point could be about
anywhere. Since I don't think the obvious copy loop is too
bad, I'm trying to err in its favor. */
if (to - from < 64)
{
do
*--endt = *--endf;
while (endf != from);
}
else
{
for (;;)
{
endt -= (to - from);
endf -= (to - from);
if (endt < to)
break;
bcopy (endf, endt, to - from);
}
/* If SIZE wasn't a multiple of TO - FROM, there will be a
little left over. The amount left over is
(endt + (to - from)) - to, which is endt - from. */
bcopy (from, to, endt - from);
}
}
}
#endif /* !HAVE_MEMMOVE */
/* Resize the given region to the new size, returning a pointer
to the (possibly moved) region. This is optimized for speed;
some benchmarks seem to indicate that greater compactness is
achieved by unconditionally allocating and copying to a
new region. This module has incestuous knowledge of the
internals of both free and malloc. */
static genptr_t
irealloc (ptr, size)
genptr_t ptr;
size_t size;
{
genptr_t result;
int type;
size_t block, blocks, oldlimit;
if (size == 0)
{
ifree (ptr);
return imalloc (0);
}
else if (ptr == NULL)
return imalloc (size);
block = BLOCK (ptr);
type = _heapinfo[block].busy.type;
switch (type)
{
case 0:
/* Maybe reallocate a large block to a small fragment. */
if (size <= BLOCKSIZE / 2)
{
result = imalloc (size);
if (result != NULL)
{
memcpy (result, ptr, size);
ifree (ptr);
return result;
}
}
/* The new size is a large allocation as well;
see if we can hold it in place. */
blocks = BLOCKIFY (size);
if (blocks < _heapinfo[block].busy.info.size)
{
/* The new size is smaller; return
excess memory to the free list. */
_heapinfo[block + blocks].busy.type = 0;
_heapinfo[block + blocks].busy.info.size
= _heapinfo[block].busy.info.size - blocks;
_heapinfo[block].busy.info.size = blocks;
/* We have just created a new chunk by splitting a chunk in two.
Now we will free this chunk; increment the statistics counter
so it doesn't become wrong when ifree decrements it. */
++chunks_used;
ifree (ADDRESS (block + blocks));
result = ptr;
}
else if (blocks == _heapinfo[block].busy.info.size)
/* No size change necessary. */
result = ptr;
else
{
/* Won't fit, so allocate a new region that will.
Free the old region first in case there is sufficient
adjacent free space to grow without moving. */
blocks = _heapinfo[block].busy.info.size;
/* Prevent free from actually returning memory to the system. */
oldlimit = _heaplimit;
_heaplimit = 0;
ifree (ptr);
result = imalloc (size);
if (_heaplimit == 0)
_heaplimit = oldlimit;
if (result == NULL)
{
/* Now we're really in trouble. We have to unfree
the thing we just freed. Unfortunately it might
have been coalesced with its neighbors. */
if (_heapindex == block)
(void) imalloc (blocks * BLOCKSIZE);
else
{
genptr_t previous;
previous = imalloc ((block - _heapindex) * BLOCKSIZE);
(void) imalloc (blocks * BLOCKSIZE);
ifree (previous);
}
return NULL;
}
if (ptr != result)
memmove (result, ptr, blocks * BLOCKSIZE);
}
break;
default:
/* Old size is a fragment; type is logarithm
to base two of the fragment size. */
if (size > (size_t) (1 << (type - 1)) &&
size <= (size_t) (1 << type))
/* The new size is the same kind of fragment. */
result = ptr;
else
{
/* The new size is different; allocate a new space,
and copy the lesser of the new size and the old. */
result = imalloc (size);
if (result == NULL)
return NULL;
memcpy (result, ptr, min (size, (size_t) 1 << type));
ifree (ptr);
}
break;
}
return result;
}
genptr_t
realloc (ptr, size)
genptr_t ptr;
size_t size;
{
#ifdef RCHECK
struct hdr *hdr;
size_t osize;
#endif
if (malloc_initialized == 0 && malloc_initialize () == 0)
return NULL;
nrealloc++;
#ifdef RCHECK
hdr = ((struct hdr *) ptr) - 1;
osize = hdr->size;
checkhdr (hdr);
if (size < osize)
zmemset ((char *) ptr + size, FREEFLOOD, osize - size);
hdr = (struct hdr *) irealloc ((genptr_t) hdr, sizeof (struct hdr) + size + 1);
if (hdr == NULL)
return NULL;
hdr->size = size;
hdr->magic = MAGICWORD;
((char *) &hdr[1])[size] = MAGICBYTE;
if (size > osize)
zmemset ((char *) (hdr + 1) + osize, MALLOCFLOOD, size - osize);
return (genptr_t) (hdr + 1);
#else
return (irealloc (ptr, size));
#endif
}
/* Allocate an array of NMEMB elements each SIZE bytes long.
The entire array is initialized to zeros. */
genptr_t
calloc (nmemb, size)
register size_t nmemb;
register size_t size;
{
register genptr_t result;
result = malloc (nmemb * size);
if (result != NULL)
(void) memset (result, 0, nmemb * size);
return result;
}
/* Define the `cfree' alias for `free'. */
void
cfree (ptr)
genptr_t ptr;
{
free (ptr);
}
genptr_t
memalign (alignment, size)
size_t alignment;
size_t size;
{
genptr_t result;
unsigned long int adj, lastadj;
/* Allocate a block with enough extra space to pad the block with up to
(ALIGNMENT - 1) bytes if necessary. */
result = malloc (size + alignment - 1);
if (result == NULL)
return NULL;
/* Figure out how much we will need to pad this particular block
to achieve the required alignment. */
adj = (unsigned long int) ((char *) result - (char *) NULL) % alignment;
do
{
/* Reallocate the block with only as much excess as it needs. */
free (result);
result = malloc (adj + size);
if (result == NULL) /* Impossible unless interrupted. */
return NULL;
lastadj = adj;
adj = (unsigned long int) ((char *) result - (char *) NULL) % alignment;
/* It's conceivable we might have been so unlucky as to get a
different block with weaker alignment. If so, this block is too
short to contain SIZE after alignment correction. So we must
try again and get another block, slightly larger. */
} while (adj > lastadj);
if (adj != 0)
{
/* Record this block in the list of aligned blocks, so that `free'
can identify the pointer it is passed, which will be in the middle
of an allocated block. */
struct alignlist *l;
for (l = _aligned_blocks; l != NULL; l = l->next)
if (l->aligned == NULL)
/* This slot is free. Use it. */
break;
if (l == NULL)
{
l = (struct alignlist *) imalloc (sizeof (struct alignlist));
if (l == NULL)
{
free (result);
return NULL;
}
l->next = _aligned_blocks;
_aligned_blocks = l;
}
l->exact = result;
result = l->aligned = (char *) result + alignment - adj;
}
return result;
}
/* On some ANSI C systems, some libc functions call _malloc, _free
and _realloc. Make them use the GNU functions. */
genptr_t
_malloc (size)
size_t size;
{
return malloc (size);
}
void
_free (ptr)
genptr_t ptr;
{
free (ptr);
}
genptr_t
_realloc (ptr, size)
genptr_t ptr;
size_t size;
{
return realloc (ptr, size);
}
struct mstats
mstats ()
{
struct mstats result;
result.bytes_total = (char *) default_morecore (0) - _heapbase;
result.chunks_used = chunks_used;
result.bytes_used = bytes_used;
result.chunks_free = chunks_free;
result.bytes_free = bytes_free;
result.nmalloc = nmalloc;
result.nrealloc = nrealloc;
result.nfree = nfree;
result.nsbrk = nsbrk;
result.tsbrk = tsbrk;
result.negsbrk = negsbrk;
result.tnegsbrk = tnegsbrk;
return result;
}
#ifdef RCHECK
/* Standard debugging hooks for `malloc'. */
static void
zmemset (ptr, val, size)
genptr_t ptr;
int val;
size_t size;
{
char *cp = ptr;
while (size--)
*cp++ = val;
}
static enum mcheck_status
checkhdr (hdr)
const struct hdr *hdr;
{
enum mcheck_status status;
switch (hdr->magic)
{
default:
status = MCHECK_HEAD;
break;
case MAGICFREE:
status = MCHECK_FREE;
break;
case MAGICWORD:
if (((char *) &hdr[1])[hdr->size] != MAGICBYTE)
status = MCHECK_TAIL;
else
status = MCHECK_OK;
break;
}
if (status != MCHECK_OK)
mabort (status);
return status;
}
#ifndef botch
botch (msg)
char *msg;
{
fprintf (stderr, "mcheck: %s\n", msg);
fflush (stderr);
abort ();
}
#endif
static void
mabort (status)
enum mcheck_status status;
{
const char *msg;
switch (status)
{
case MCHECK_OK:
msg = "memory is consistent, library is buggy";
break;
case MCHECK_HEAD:
msg = "memory clobbered before allocated block";
break;
case MCHECK_TAIL:
msg = "memory clobbered past end of allocated block";
break;
case MCHECK_FREE:
msg = "block freed twice";
break;
default:
msg = "bogus mcheck_status, library is buggy";
break;
}
botch (msg);
}
enum mcheck_status
mprobe (ptr)
genptr_t ptr;
{
return checkhdr ((struct hdr *)ptr);
}
#ifndef STDIO_H_INCLUDED
# include <stdio.h>
#endif
void
print_malloc_stats (s)
char *s;
{
struct mstats ms;
ms = mstats ();
fprintf (stderr, "Memory allocation statistics: %s\n", s ? s : "");
fprintf (stderr, "\nTotal chunks in use: %d, total chunks free: %d\n",
ms.chunks_used, ms.chunks_free);
fprintf (stderr, "Total bytes in use: %u, total bytes free: %u\n",
ms.bytes_used, ms.bytes_free);
fprintf (stderr, "Total bytes (from heapbase): %d\n", ms.bytes_total);
fprintf (stderr, "Total mallocs: %d, total frees: %d, total reallocs: %d\n",
ms.nmalloc, ms.nfree, ms.nrealloc);
fprintf (stderr, "Total sbrks: %d, total bytes via sbrk: %d\n",
ms.nsbrk, ms.tsbrk);
fprintf (stderr, "Total negative sbrks: %d, total bytes returned to kernel: %d\n",
ms.negsbrk, ms.tnegsbrk);
}
#endif /* RCHECK */
|