1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
|
#!/bin/env bash
################################################################################
# shellmath.sh
# Shell functions for floating-point arithmetic using only builtins
#
# Copyright (c) 2020 by Michael Wood. All rights reserved.
#
# Usage:
#
# source _thisPath_/_thisFileName_
#
# # Conventional method: call the APIs by subshelling
# mySum=$( _shellmath_add 202.895 6.00311 )
# echo $mySum
#
# # Optimized method: use hidden globals to simulate more flexible pass-and-return
# _shellmath_isOptimized=1
# _shellmath_add 44.2 -87
# _shellmath_getReturnValue mySum
# echo $mySum
#
################################################################################
################################################################################
# Program constants
################################################################################
declare -A -r __shellmath_numericTypes=(
[INTEGER]=0
[DECIMAL]=1
)
declare -A -r __shellmath_returnCodes=(
[SUCCESS]="0:Success"
[FAIL]="1:General failure"
[ILLEGAL_NUMBER]="2:Invalid argument; decimal number required: '%s'"
[DIVIDE_BY_ZERO]="3:Divide by zero error"
)
declare -r -i __shellmath_true=1
declare -r -i __shellmath_false=0
declare __shellmath_SUCCESS __shellmath_FAIL __shellmath_ILLEGAL_NUMBER
################################################################################
# Program state
################################################################################
declare __shellmath_isOptimized=${__shellmath_false}
declare __shellmath_didPrecalc=${__shellmath_false}
################################################################################
# Error-handling utilities
################################################################################
function _shellmath_getReturnCode()
{
local errorName=$1
return "${__shellmath_returnCodes[$errorName]%%:*}"
}
function _shellmath_warn()
{
# Generate an error message and return control to the caller
_shellmath_handleError -r "$@"
return $?
}
function _shellmath_exit()
{
# Generate an error message and EXIT THE SCRIPT / interpreter
_shellmath_handleError "$@"
}
function _shellmath_handleError()
{
# Hidden option "-r" causes return instead of exit
local returnDontExit=$__shellmath_false
if [[ "$1" == "-r" ]]; then
returnDontExit=${__shellmath_true}
shift
fi
# Format of $1: returnCode:msgTemplate
[[ "$1" =~ ^([0-9]+):(.*) ]]
returnCode=${BASH_REMATCH[1]}
msgTemplate=${BASH_REMATCH[2]}
shift
# Display error msg, making parameter substitutions as needed
msgParameters="$*"
printf '%s ' "$msgTemplate" "${msgParameters[@]}"; printf '\n'
if ((returnDontExit)); then
return "$returnCode"
else
exit "$returnCode"
fi
}
################################################################################
# precalc()
#
# Pre-calculates certain global data and by setting the global variable
# "__shellmath_didPrecalc" records that this routine has been called. As an
# optimization, the caller should check that global to prevent needless
# invocations.
################################################################################
function _shellmath_precalc()
{
# Set a few global constants
_shellmath_getReturnCode SUCCESS; __shellmath_SUCCESS=$?
_shellmath_getReturnCode FAIL; __shellmath_FAIL=$?
_shellmath_getReturnCode ILLEGAL_NUMBER; __shellmath_ILLEGAL_NUMBER=$?
# Determine the decimal precision to which we can accurately calculate.
# To do this we probe for the threshold at which integers overflow and
# take the integer floor of that number's base-10 logarithm.
# We check the 64-bit, 32-bit and 16-bit thresholds only.
if ((2**63 < 2**63-1)); then
__shellmath_precision=18
__shellmath_maxValue=$((2**63-1))
elif ((2**31 < 2**31-1)); then
__shellmath_precision=9
__shellmath_maxValue=$((2**31-1))
else ## ((2**15 < 2**15-1))
__shellmath_precision=4
__shellmath_maxValue=$((2**15-1))
fi
__shellmath_didPrecalc=$__shellmath_true
}
################################################################################
# Simulate pass-and-return by reference using a secret global storage array
################################################################################
declare -a __shellmath_storage
function _shellmath_setReturnValues()
{
local -i _i
for ((_i=1; _i<=$#; _i++)); do
__shellmath_storage[_i]="${!_i}"
done
__shellmath_storage[0]=$#
}
function _shellmath_getReturnValues()
{
local -i _i
local evalString
for ((_i=1; _i<=$#; _i++)); do
evalString+=${!_i}="${__shellmath_storage[_i]}"" "
done
eval "$evalString"
}
function _shellmath_setReturnValue() { __shellmath_storage=(1 "$1"); }
function _shellmath_getReturnValue() { eval "$1"=\"${__shellmath_storage[1]}\"; }
function _shellmath_getReturnValueCount() { eval "$1"=\"${__shellmath_storage[0]}\"; }
################################################################################
# validateAndParse(numericString)
# Return Code: SUCCESS or ILLEGAL_NUMBER
# Return Signature: integerPart fractionalPart isNegative numericType isScientific
#
# Validate and parse arguments to the main arithmetic routines
################################################################################
function _shellmath_validateAndParse()
{
local n="$1"
local isNegative=${__shellmath_false}
local isScientific=${__shellmath_false}
local numericType returnCode
((returnCode = __shellmath_SUCCESS))
# Accept decimals: leading digits (optional), decimal point, trailing digits
if [[ "$n" =~ ^[-]?([0-9]*)\.([0-9]+)$ ]]; then
local integerPart=${BASH_REMATCH[1]:-0}
local fractionalPart=${BASH_REMATCH[2]}
# Strip superfluous trailing zeros
if [[ "$fractionalPart" =~ ^(.*[^0])0*$ ]]; then
fractionalPart=${BASH_REMATCH[1]}
fi
numericType=${__shellmath_numericTypes[DECIMAL]}
# Factor out the negative sign if it is present
if [[ "$n" =~ ^- ]]; then
isNegative=${__shellmath_true}
n=${n:1}
fi
_shellmath_setReturnValues "$integerPart" "$fractionalPart" \
$isNegative "$numericType" $isScientific
return "$returnCode"
# Accept integers
elif [[ "$n" =~ ^[-]?[0-9]+$ ]]; then
numericType=${__shellmath_numericTypes[INTEGER]}
# Factor out the negative sign if it is present
if [[ "$n" =~ ^- ]]; then
isNegative=${__shellmath_true}
n=${n:1}
fi
_shellmath_setReturnValues "$n" 0 $isNegative "$numericType" $isScientific
return "$returnCode"
# Accept scientific notation: 1e5, 2.44E+10, etc.
elif [[ "$n" =~ (.*)[Ee](.*) ]]; then
local significand=${BASH_REMATCH[1]}
local exponent=${BASH_REMATCH[2]}
# Validate the significand: optional sign, integer part,
# optional decimal point and fractional part
if [[ "$significand" =~ ^[-]?([0-9]+)(\.([0-9]+))?$ ]]; then
isScientific=${__shellmath_true}
# Separate the integer and fractional parts
local sigInteger=${BASH_REMATCH[1]}
local sigIntLength=${#sigInteger}
local sigFraction=${BASH_REMATCH[3]}
# Strip superfluous trailing zeros
if [[ "$sigFraction" =~ ^(.*[^0])0*$ ]]; then
sigFraction=${BASH_REMATCH[1]}
fi
local sigFracLength=${#sigFraction}
if [[ "$n" =~ ^- ]]; then
isNegative=${__shellmath_true}
n=${n:1}
fi
# Rewrite the scientifically-notated number in ordinary decimal notation.
# IOW, realign the integer and fractional parts. Separate with a space
# so they can be returned as two separate values
if ((exponent > 0)); then
local zeroCount integer fraction
((zeroCount = exponent - sigFracLength))
if ((zeroCount > 0)); then
printf -v zeros "%0*d" "$zeroCount" 0
n=${sigInteger}${sigFraction}${zeros}" 0"
numericType=${__shellmath_numericTypes[INTEGER]}
elif ((zeroCount < 0)); then
n=${sigInteger}${sigFraction:0:exponent}" "${sigFraction:exponent}
numericType=${__shellmath_numericTypes[DECIMAL]}
else
n=${sigInteger}${sigFraction}" 0"
numericType=${__shellmath_numericTypes[INTEGER]}
fi
integer=${n% *}; fraction=${n#* }
_shellmath_setReturnValues "$integer" "$fraction" $isNegative "$numericType" $isScientific
return "$returnCode"
elif ((exponent < 0)); then
local zeroCount integer fraction
((zeroCount = -exponent - sigIntLength))
if ((zeroCount > 0)); then
printf -v zeros "%0*d" "$zeroCount" 0
n="0 "${zeros}${sigInteger}${sigFraction}
numericType=${__shellmath_numericTypes[DECIMAL]}
elif ((zeroCount < 0)); then
n=${sigInteger:0:-zeroCount}" "${sigInteger:(-zeroCount)}${sigFraction}
numericType=${__shellmath_numericTypes[DECIMAL]}
else
n="0 "${sigInteger}${sigFraction}
numericType=${__shellmath_numericTypes[DECIMAL]}
fi
integer=${n% *}; fraction=${n#* }
_shellmath_setReturnValues "$integer" "$fraction" $isNegative "$numericType" $isScientific
return "$returnCode"
else
# exponent == 0 means the number is already aligned as desired
numericType=${__shellmath_numericTypes[DECIMAL]}
_shellmath_setReturnValues "$sigInteger" "$sigFraction" $isNegative "$numericType" $isScientific
return "$returnCode"
fi
# Reject strings like xxx[Ee]yyy where xxx, yyy are not valid numbers
else
((returnCode = __shellmath_ILLEGAL_NUMBER))
_shellmath_setReturnValues ""
return "$returnCode"
fi
# Reject everything else
else
((returnCode = __shellmath_ILLEGAL_NUMBER))
_shellmath_setReturnValues ""
return "$returnCode"
fi
}
################################################################################
# numToScientific (integerPart, fractionalPart)
#
# Format conversion utility function
################################################################################
function _shellmath_numToScientific()
{
local integerPart=$1 fractionalPart=$2
local exponent head tail scientific
if ((integerPart > 0)); then
((exponent = ${#integerPart}-1))
head=${integerPart:0:1}
tail=${integerPart:1}${fractionalPart}
elif ((integerPart < 0)); then
((exponent = ${#integerPart}-2)) # skip "-" and first digit
head=${integerPart:0:2}
tail=${integerPart:2}${fractionalPart}
else
[[ "$fractionalPart" =~ ^[-]?(0*)([^0])(.*)$ ]]
exponent=$((-(${#BASH_REMATCH[1]} + 1)))
head=${BASH_REMATCH[2]}
tail=${BASH_REMATCH[3]}
fi
# Remove trailing zeros
[[ $tail =~ ^.*[^0] ]]; tail=${BASH_REMATCH[0]:-0}
printf -v scientific "%d.%de%d" "$head" "$tail" "$exponent"
_shellmath_setReturnValue "$scientific"
}
################################################################################
# _shellmath_add (addend_1, addend_2)
################################################################################
function _shellmath_add()
{
local n1="$1"
local n2="$2"
if ((! __shellmath_didPrecalc)); then
_shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true
fi
local isVerbose=$(( __shellmath_isOptimized == __shellmath_false ))
# Is the caller itself an arithmetic function?
local isSubcall=${__shellmath_false}
local isMultiplication=${__shellmath_false}
if [[ "${FUNCNAME[1]}" =~ shellmath_(add|subtract|multiply|divide)$ ]]; then
isSubcall=${__shellmath_true}
if [[ "${BASH_REMATCH[1]}" == multiply ]]; then
isMultiplication=${__shellmath_true}
fi
fi
# Handle corner cases where argument count is not 2
local argCount=$#
if ((argCount == 0)); then
echo "Usage: ${FUNCNAME[0]} addend_1 addend_2"
return "$__shellmath_SUCCESS"
elif ((argCount == 1)); then
# Note the result as-is, print if running "normally", and return
_shellmath_setReturnValue "$n1"
(( isVerbose && ! isSubcall )) && echo "$n1"
return "$__shellmath_SUCCESS"
elif ((argCount > 2 && !isSubcall)); then
local recursiveReturn
# Use a binary recursion tree to add everything up
# 1) left branch
_shellmath_add "${@:1:$((argCount/2))}"; recursiveReturn=$?
_shellmath_getReturnValue n1
if (( recursiveReturn != __shellmath_SUCCESS )); then
_shellmath_setReturnValue "$n1"
return "$recursiveReturn"
fi
# 2) right branch
_shellmath_add "${@:$((argCount/2+1))}"; recursiveReturn=$?
_shellmath_getReturnValue n2
if (( recursiveReturn != __shellmath_SUCCESS )); then
_shellmath_setReturnValue "$n2"
return "$recursiveReturn"
fi
# 3) head node
local sum
_shellmath_add "$n1" "$n2"; recursiveReturn=$?
_shellmath_getReturnValue sum
_shellmath_setReturnValue "$sum"
if (( isVerbose && ! isSubcall )); then
echo "$sum"
fi
return "$recursiveReturn"
fi
local integerPart1 fractionalPart1 integerPart2 fractionalPart2
local isNegative1 type1 isScientific1 isNegative2 type2 isScientific2
local flags
if ((isMultiplication)); then
integerPart1="$1"
fractionalPart1="$2"
integerPart2="$3"
fractionalPart2="$4"
type1=${__shellmath_numericTypes[DECIMAL]}
type2=${__shellmath_numericTypes[DECIMAL]}
isNegative1=$__shellmath_false
isNegative2=$__shellmath_false
isScientific1=$__shellmath_false
isScientific2=$__shellmath_false
else
# Check and parse the arguments
_shellmath_validateAndParse "$n1"; flags=$?
_shellmath_getReturnValues integerPart1 fractionalPart1 isNegative1 type1 isScientific1
if ((flags == __shellmath_ILLEGAL_NUMBER)); then
_shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n1"
return $?
fi
_shellmath_validateAndParse "$n2"; flags=$?
_shellmath_getReturnValues integerPart2 fractionalPart2 isNegative2 type2 isScientific2
if ((flags == __shellmath_ILLEGAL_NUMBER)); then
_shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n2"
return $?
fi
fi
# Quick add & return for integer adds
if ((type1==type2 && type1==__shellmath_numericTypes[INTEGER])); then
((isNegative1)) && ((integerPart1*=-1))
((isNegative2)) && ((integerPart2*=-1))
local sum=$((integerPart1 + integerPart2))
if (( (!isSubcall) && (isScientific1 || isScientific2) )); then
_shellmath_numToScientific $sum ""
_shellmath_getReturnValue sum
fi
_shellmath_setReturnValue $sum
if (( isVerbose && ! isSubcall )); then
echo "$sum"
fi
return "$__shellmath_SUCCESS"
fi
# Right-pad both fractional parts with zeros to the same length
local fractionalLen1=${#fractionalPart1}
local fractionalLen2=${#fractionalPart2}
if ((fractionalLen1 > fractionalLen2)); then
# Use printf to zero-pad. This avoids mathematical side effects.
printf -v fractionalPart2 %-*s "$fractionalLen1" "$fractionalPart2"
fractionalPart2=${fractionalPart2// /0}
elif ((fractionalLen2 > fractionalLen1)); then
printf -v fractionalPart1 %-*s "$fractionalLen2" "$fractionalPart1"
fractionalPart1=${fractionalPart1// /0}
fi
local unsignedFracLength=${#fractionalPart1}
# Implement a sign convention that will enable us to detect carries by
# comparing string lengths of addends and sums: propagate the sign across
# both numeric parts (whether unsigned or zero).
if ((isNegative1)); then
fractionalPart1="-"$fractionalPart1
integerPart1="-"$integerPart1
fi
if ((isNegative2)); then
fractionalPart2="-"$fractionalPart2
integerPart2="-"$integerPart2
fi
local integerSum=0
local fractionalSum=0
((integerSum = integerPart1+integerPart2))
# Summing the fractional parts is tricky: We need to override the shell's
# default interpretation of leading zeros, but the operator for doing this
# (the "10#" operator) cannot work directly with negative numbers. So we
# use parameter expansions to separate the \+/-\ signs from the numbers.
((fractionalSum =
${fractionalPart1//[^-]}10#${fractionalPart1//[^0-9]} +
${fractionalPart2//[^-]}10#${fractionalPart2//[^0-9]}))
unsignedFracSumLength=${#fractionalSum}
if [[ "$fractionalSum" =~ ^[-] ]]; then
((unsignedFracSumLength--))
fi
# Restore any leading zeroes that were lost when adding
if ((unsignedFracSumLength < unsignedFracLength)); then
local lengthDiff=$((unsignedFracLength - unsignedFracSumLength))
local zeroPrefix
printf -v zeroPrefix "%0*d" "$lengthDiff" 0
if ((fractionalSum < 0)); then
fractionalSum="-"${zeroPrefix}${fractionalSum:1}
else
fractionalSum=${zeroPrefix}${fractionalSum}
fi
fi
# Carry a digit from fraction to integer if required
if (( ${fractionalSum//[^-]}10#${fractionalSum//[^0-9]} !=0 )) &&
((unsignedFracSumLength > unsignedFracLength))
then
local carryAmount
((carryAmount = isNegative1?-1:1))
((integerSum += carryAmount))
# Remove the leading 1-digit whether the fraction is + or -
fractionalSum=${fractionalSum/1/}
fi
# Transform the partial sums from additive to concatenative. Example: the
# pair (-2,3) is not -2.3 but rather (-2)+(0.3), i.e. -1.7 so we want to
# transform (-2,3) to (-1,7). This transformation is meaningful when
# the two parts have opposite signs, so that's what we look for.
if ((integerSum < 0)) &&
(( ${fractionalSum//[^-]}10#${fractionalSum//[^0-9]} > 0))
then
((integerSum += 1))
((fractionalSum = ${fractionalSum//[^-]}10#${fractionalSum//[^0-9]} -
10**unsignedFracSumLength))
elif ((integerSum > 0)) &&
(( ${fractionalSum//[^-]}10#${fractionalSum//[^0-9]} < 0))
then
((integerSum -= 1))
((fractionalSum = 10**unsignedFracSumLength +
${fractionalSum//[^-]}10#${fractionalSum//[^0-9]} ))
fi
# This last case needs to function either as an "else" for the above,
# or as a coda to the "if" clause when integerSum is -1 initially.
if ((integerSum == 0)) &&
(( ${fractionalSum//[^-]}10#${fractionalSum//[^0-9]} < 0))
then
integerSum="-"$integerSum
((fractionalSum *= -1))
fi
# Touch up the numbers for display
local sum
(( ${fractionalSum//[^-]}10#${fractionalSum//[^0-9]}< 0)) &&
fractionalSum=${fractionalSum//[-]}
if (( (!isSubcall) && (isScientific1 || isScientific2) )); then
_shellmath_numToScientific "$integerSum" "$fractionalSum"
_shellmath_getReturnValue sum
elif (( ${fractionalSum//[^-]}10#${fractionalSum//[^0-9]} )); then
printf -v sum "%s.%s" "$integerSum" "$fractionalSum"
else
sum=$integerSum
fi
# Note the result, print if running "normally", and return
_shellmath_setReturnValue "$sum"
if (( isVerbose && ! isSubcall )); then
echo "$sum"
fi
return "$__shellmath_SUCCESS"
}
################################################################################
# subtract (subtrahend, minuend)
################################################################################
function _shellmath_subtract()
{
local n1="$1"
local n2="$2"
local isVerbose=$(( __shellmath_isOptimized == __shellmath_false ))
if ((! __shellmath_didPrecalc)); then
_shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true
fi
if (( $# == 0 || $# > 2 )); then
echo "Usage: ${FUNCNAME[0]} subtrahend minuend"
return "$__shellmath_SUCCESS"
elif (( $# == 1 )); then
# Note the value as-is and return
_shellmath_setReturnValue "$n1"
((isVerbose)) && echo "$n1"
return "$__shellmath_SUCCESS"
fi
# Symbolically negate the second argument
if [[ "$n2" =~ ^- ]]; then
n2=${n2:1}
else
n2="-"$n2
fi
# Calculate, note the result, print if running "normally", and return
local difference
_shellmath_add "$n1" "$n2"
_shellmath_getReturnValue difference
if ((isVerbose)); then
echo "$difference"
fi
return $?
}
################################################################################
# reduceOuterPairs (two integer parts [, two fractional parts])
#
# Examines the magnitudes of two numbers in advance of a multiplication
# and either chops off their lowest-order digits or pushes them to the
# corresponding lower-order parts in order to prevent overflow in the product.
# The choice depends on whether 2 or 4 arguments are supplied.
################################################################################
function _shellmath_reduceOuterPairs()
{
local value1="$1" value2="$2" subvalue1="$3" subvalue2="$4"
local digitExcess value1Len=${#value1} value2Len=${#value2}
((digitExcess = value1Len + value2Len - __shellmath_precision))
# Be very precise about detecting overflow. The "digit excess" underestimates
# this: floor(log_10(longLongMax)). We don't want to needlessly lose precision
# when a product barely squeezes under the exact threshold.
if ((digitExcess>1 || (digitExcess==1 && value1 > __shellmath_maxValue/value2) )); then
# Identify the digit-tails to be pruned off and either discarded or
# pushed past the decimal point. In pruning the two values we want to
# retain as much "significance" as possible, so we try to equalize the
# lengths of the remaining digit sequences.
local tail1 tail2
local lengthDiff leftOver
# Which digit string is longer, and by how much?
((lengthDiff = value1Len - value2Len))
if ((lengthDiff > 0)); then
if ((digitExcess <= lengthDiff)); then
# Chop digits from the longer string only
tail1=${value1:(-digitExcess)}
tail2="" # do not chop anything
else
# Chop more digits from the longer string so the two strings
# end up as nearly-equal in length as possible
((leftOver = digitExcess - lengthDiff))
tail1=${value1:(-(lengthDiff + leftOver/2))}
tail2=${value2:(-((leftOver+1)/2))}
fi
else
((lengthDiff *= -1))
# Mirror the above code block but swap 1 and 2
if ((digitExcess <= lengthDiff)); then
tail1=""
tail2=${value2:(-digitExcess)}
else
((leftOver = digitExcess - lengthDiff))
tail1=${value1:(-((leftOver+1)/2))}
tail2=${value2:(-(lengthDiff + leftOver/2))}
fi
fi
# Discard the least-significant digits or move them past the decimal point
value1=${value1%"${tail1}"}
[[ -n "$subvalue1" ]] && subvalue1=${tail1}${subvalue1%0} # remove placeholder zero
value2=${value2%"${tail2}"}
[[ -n "$subvalue2" ]] && subvalue2=${tail2}${subvalue2%0}
else
# Signal the caller that no rescaling was actually done
((digitExcess = 0))
fi
_shellmath_setReturnValues "$value1" "$value2" \
"$subvalue1" "$subvalue2" "$digitExcess"
}
################################################################################
# rescaleValue(value, rescaleFactor)
#
# Upscales a decimal value by "factor" orders of magnitude: 3.14159 --> 3141.59
################################################################################
function _shellmath_rescaleValue()
{
local value="$1" rescalingFactor="$2"
local head tail zeroCount zeroTail
[[ "$value" =~ ^(.*)\.(.*)$ ]]
head=${BASH_REMATCH[1]}
tail=${BASH_REMATCH[2]}
((zeroCount = rescalingFactor - ${#tail}))
if ((zeroCount > 0)); then
printf -v zeroTail "%0*d" "$zeroCount" 0
value=${head}${tail}${zeroTail}
elif ((zeroCount < 0)); then
value=${head}${tail:0:rescalingFactor}"."${tail:rescalingFactor}
else
value=${head}${tail}
fi
_shellmath_setReturnValue "$value"
}
################################################################################
# reduceCrossPairs (two integer parts, two fractional parts)
#
# Examines the precision of the inner products (of "multiplication by parts")
# and if necessary truncates the fractional part(s) to prevent overflow
################################################################################
function _shellmath_reduceCrossPairs()
{
local value1="$1" value2="$2" subvalue1="$3" subvalue2="$4"
local digitExcess value1Len=${#value1} value2Len=${#value2}
local subvalue1Len=${#subvalue1} subvalue2Len=${#subvalue2}
# Check BOTH cross-products
((digitExcess = value1Len + subvalue2Len - __shellmath_precision))
if ((digitExcess > 1 || (digitExcess==1 && value1 > __shellmath_maxValue/subvalue2) )); then
subvalue2=${subvalue2:0:(-digitExcess)}
fi
((digitExcess = value2Len + subvalue1Len - __shellmath_precision))
if ((digitExcess > 1 || (digitExcess==1 && value2 > __shellmath_maxValue/subvalue1) )); then
subvalue1=${subvalue1:0:(-digitExcess)}
fi
_shellmath_setReturnValues "$subvalue1" "$subvalue2"
}
function _shellmath_round()
{
local number="$1" digitCount="$2"
local nextDigit=${number:digitCount:1}
number=${number:0:digitCount}
if ((nextDigit >= 5)); then
printf -v number "%0*d" "$digitCount" $((${number//[^-]}10#${number//[^0-9]} + 1))
fi
_shellmath_setReturnValue "$number"
}
################################################################################
# multiply (multiplicand, multiplier)
################################################################################
function _shellmath_multiply()
{
local n1="$1"
local n2="$2"
if ((! __shellmath_didPrecalc)); then
_shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true
fi
local isVerbose=$(( __shellmath_isOptimized == __shellmath_false ))
# Is the caller itself an arithmetic function?
local isSubcall=${__shellmath_false}
if [[ "${FUNCNAME[1]}" =~ shellmath_(add|subtract|multiply|divide)$ ]]; then
isSubcall=${__shellmath_true}
fi
# Handle corner cases where argument count is not 2
local argCount=$#
if ((argCount == 0)); then
echo "Usage: ${FUNCNAME[0]} factor_1 factor_2"
return "$__shellmath_SUCCESS"
elif ((argCount == 1)); then
# Note the value as-is and return
_shellmath_setReturnValue "$n1"
(( isVerbose && ! isSubcall )) && echo "$n1"
return "$__shellmath_SUCCESS"
elif ((argCount > 2)); then
local recursiveReturn
# Use a binary recursion tree to multiply everything out
# 1) left branch
_shellmath_multiply "${@:1:$((argCount/2))}"; recursiveReturn=$?
_shellmath_getReturnValue n1
if (( recursiveReturn != __shellmath_SUCCESS )); then
_shellmath_setReturnValue "$n1"
return "$recursiveReturn"
fi
# 2) right branch
_shellmath_multiply "${@:$((argCount/2+1))}"; recursiveReturn=$?
_shellmath_getReturnValue n2
if (( recursiveReturn != __shellmath_SUCCESS )); then
_shellmath_setReturnValue "$n2"
return "$recursiveReturn"
fi
# 3) head node
local product
_shellmath_multiply "$n1" "$n2"; recursiveReturn=$?
_shellmath_getReturnValue product
_shellmath_setReturnValue "$product"
if (( isVerbose && ! isSubcall )); then
echo "$product"
fi
return "$recursiveReturn"
fi
local integerPart1 fractionalPart1 integerPart2 fractionalPart2
local isNegative1 type1 isScientific1 isNegative2 type2 isScientific2
local flags
# Check and parse the arguments
_shellmath_validateAndParse "$n1"; flags=$?
_shellmath_getReturnValues integerPart1 fractionalPart1 isNegative1 type1 isScientific1
if ((flags == __shellmath_ILLEGAL_NUMBER)); then
_shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n1"
return $?
fi
_shellmath_validateAndParse "$n2"; flags=$?
_shellmath_getReturnValues integerPart2 fractionalPart2 isNegative2 type2 isScientific2
if ((flags == __shellmath_ILLEGAL_NUMBER)); then
_shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n2"
return $?
fi
# Overflow / underflow detection and accommodation
local rescalingFactor=0
if ((${#integerPart1} + ${#integerPart2} + ${#fractionalPart1} + ${#fractionalPart2} >= __shellmath_precision)); then
_shellmath_reduceOuterPairs "$integerPart1" "$integerPart2" "$fractionalPart1" "$fractionalPart2"
_shellmath_getReturnValues integerPart1 integerPart2 fractionalPart1 fractionalPart2 rescalingFactor
if ((${fractionalPart1//[^-]}10#${fractionalPart1//[^0-9]})); then
type1=${__shellmath_numericTypes[DECIMAL]}
fi
if ((${fractionalPart2//[^-]}10#${fractionalPart2//[^0-9]})); then
type2=${__shellmath_numericTypes[DECIMAL]}
fi
_shellmath_reduceCrossPairs "$integerPart1" "$integerPart2" "$fractionalPart1" "$fractionalPart2"
_shellmath_getReturnValues fractionalPart1 fractionalPart2
_shellmath_reduceOuterPairs "$fractionalPart1" "$fractionalPart2"
_shellmath_getReturnValues fractionalPart1 fractionalPart2
fi
# Quick multiply & return for integer multiplies
if ((type1==type2 && type1==__shellmath_numericTypes[INTEGER])); then
((isNegative1)) && ((integerPart1*=-1))
((isNegative2)) && ((integerPart2*=-1))
local product=$((integerPart1 * integerPart2))
if ((rescalingFactor > 0)); then
_shellmath_rescaleValue "$product" "$rescalingFactor"
_shellmath_getReturnValue product
fi
if (( (!isSubcall) && (isScientific1 || isScientific2) )); then
_shellmath_numToScientific $product ""
_shellmath_getReturnValue product
fi
_shellmath_setReturnValue $product
if (( isVerbose && ! isSubcall )); then
echo "$product"
fi
return "$__shellmath_SUCCESS"
fi
# The product has four components per the distributive law
local intProduct floatProduct innerProduct1 innerProduct2
# Widths of the decimal parts
local floatWidth fractionalWidth1 fractionalWidth2
# Compute the integer and floating-point components
((intProduct = integerPart1 * integerPart2))
fractionalWidth1=${#fractionalPart1}
fractionalWidth2=${#fractionalPart2}
((floatWidth = fractionalWidth1 + fractionalWidth2))
((floatProduct =
${fractionalPart1//[^-]}10#${fractionalPart1//[^0-9]} *
${fractionalPart2//[^-]}10#${fractionalPart2//[^0-9]}))
if ((${#floatProduct} < floatWidth)); then
printf -v floatProduct "%0*d" "$floatWidth" "$floatProduct"
fi
# Compute the inner products: First integer-multiply, then rescale
((innerProduct1 = integerPart1 * ${fractionalPart2//[^-]}10#${fractionalPart2//[^0-9]}))
((innerProduct2 = integerPart2 * ${fractionalPart1//[^-]}10#${fractionalPart1//[^0-9]}))
# Rescale the inner products back to decimals so we can shellmath_add() them
if ((fractionalWidth2 <= ${#innerProduct1})); then
local innerInt1=${innerProduct1:0:(-$fractionalWidth2)}
local innerFloat1=${innerProduct1:(-$fractionalWidth2)}
integerPart1=${innerInt1}
fractionalPart1=${innerFloat1}
else
integerPart1=0
printf -v fractionalPart1 "%0*d" "$fractionalWidth2" "$innerProduct1"
fi
if ((fractionalWidth1 <= ${#innerProduct2})); then
local innerInt2=${innerProduct2:0:(-$fractionalWidth1)}
local innerFloat2=${innerProduct2:(-$fractionalWidth1)}
integerPart2=${innerInt2}
fractionalPart2=${innerFloat2}
else
integerPart2=0
printf -v fractionalPart2 "%0*d" "$fractionalWidth1" "$innerProduct2"
fi
# Combine the distributed parts
local innerSum product
# Add the inner products to get the inner sum
_shellmath_add "$integerPart1" "$fractionalPart1" "$integerPart2" "$fractionalPart2"
_shellmath_getReturnValue innerSum
[[ "$innerSum" =~ (.*)\.(.*) ]]
integerPart1=${BASH_REMATCH[1]}
fractionalPart1=${BASH_REMATCH[2]}
# Add inner sum + outer sum
_shellmath_add "$integerPart1" "$fractionalPart1" "$intProduct" "$floatProduct"
_shellmath_getReturnValue product
# Determine the sign of the product
if ((isNegative1 != isNegative2)); then
product="-"$product
fi
# When we pre-detect overflow in the integer part of the computation,
# we compensate by shrinking the inputs by some order of magnitude.
# Having now finished the computation, we revert to the original magnitude.
if ((rescalingFactor > 0)); then
_shellmath_rescaleValue "$product" "$rescalingFactor"
_shellmath_getReturnValue product
fi
# Convert to scientific notation if appropriate
if (( (!isSubcall) && (isScientific1 || isScientific2) )); then
_shellmath_numToScientific "${product%.*}" "${product#*.}"
_shellmath_getReturnValue product
fi
# Note the result, print if running "normally", and return
_shellmath_setReturnValue $product
if (( isVerbose && ! isSubcall )); then
echo "$product"
fi
return "$__shellmath_SUCCESS"
}
################################################################################
# divide (dividend, divisor)
################################################################################
function _shellmath_divide()
{
local n1="$1"
local n2="$2"
local integerPart1 fractionalPart1 integerPart2 fractionalPart2
local isNegative1 type1 isScientific1 isNegative2 type2 isScientific2
if ((! __shellmath_didPrecalc)); then
_shellmath_precalc; __shellmath_didPrecalc=$__shellmath_true
fi
local isVerbose=$(( __shellmath_isOptimized == __shellmath_false ))
local isTesting=${__shellmath_false}
if [[ "${FUNCNAME[1]}" == "_shellmath_assert_functionReturn" ]]; then
isTesting=${__shellmath_true}
fi
if [[ $# -eq 0 || $# -gt 2 ]]; then
echo "Usage: ${FUNCNAME[0]} dividend divisor"
return "$__shellmath_SUCCESS"
elif [[ $# -eq 1 ]]; then
# Note the value as-is and return
_shellmath_setReturnValue "$n1"
((isVerbose)) && echo "$n1"
return "$__shellmath_SUCCESS"
fi
# Check and parse the arguments
local flags
_shellmath_validateAndParse "$n1"; flags=$?
_shellmath_getReturnValues integerPart1 fractionalPart1 isNegative1 type1 isScientific1
if ((flags == __shellmath_ILLEGAL_NUMBER)); then
_shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n1"
return $?
fi
_shellmath_validateAndParse "$n2"; flags=$?
_shellmath_getReturnValues integerPart2 fractionalPart2 isNegative2 type2 isScientific2
if ((flags == __shellmath_ILLEGAL_NUMBER)); then
_shellmath_warn "${__shellmath_returnCodes[ILLEGAL_NUMBER]}" "$n2"
return $?
fi
# Throw error on divide by zero
if ((integerPart2 == 0)) &&
(( ${fractionalPart2//[^-]}10#${fractionalPart2//[^0-9]} == 0 ))
then
_shellmath_warn "${__shellmath_returnCodes[DIVIDE_BY_ZERO]}" "$n2"
return $?
fi
# Convert the division problem to an *integer* division problem by rescaling
# both inputs so as to lose their decimal points. To obtain maximal precision,
# we scale up the numerator further, padding with as many zeros as it can hold
local numerator denominator quotient
local rescaleFactor zeroCount zeroTail
if ((integerPart1 == 0)); then
integerPart1=""
fi
((zeroCount = __shellmath_precision - ${#integerPart1} - ${#fractionalPart1}))
((rescaleFactor = __shellmath_precision - ${#integerPart1} - ${#fractionalPart2}))
if ((zeroCount > 0)); then
printf -v zeroTail "%0*d" "$zeroCount" 0
fi
# Rescale and rewrite the fraction to be computed, and compute it
numerator=${integerPart1}${fractionalPart1}${zeroTail}
denominator=${integerPart2}${fractionalPart2}
((quotient = ${numerator//[^-]}10#${numerator//[^0-9]} /
${denominator//[^-]}10#${denominator//[^0-9]}))
# For greater precision, re-divide by the remainder to get the next digits of the quotient
local remainder quotient_2
((remainder = ${numerator//[^-]}10#${numerator//[^0-9]} %
${denominator//[^-]}10#${denominator//[^0-9]})) # cant exceed numerator or thus, maxValue
((zeroCount = __shellmath_precision - ${#remainder}))
if ((zeroCount > 0)); then
printf -v zeroTail "%0*d" "$zeroCount" 0
else
zeroTail=""
fi
# Derive the new numerator from the remainder. Do not change the denominator.
numerator=${remainder}${zeroTail}
((quotient_2 = ${numerator//[^-]}10#${numerator//[^0-9]} /
${denominator//[^-]}10#${denominator//[^0-9]}))
quotient=${quotient}${quotient_2}
((rescaleFactor += ${#quotient_2}))
# Rescale back. For aesthetic reasons we also round off at the "precision"th decimal place
((zeroCount = rescaleFactor - ${#quotient}))
if ((zeroCount >= 0)); then
local zeroPrefix="" fractionalPart
if ((zeroCount > 0)); then
printf -v zeroPrefix "%0*d" "$((rescaleFactor - ${#quotient}))" 0
fi
fractionalPart=${zeroPrefix}${quotient}
_shellmath_round "$fractionalPart" "$__shellmath_precision"
_shellmath_getReturnValue fractionalPart
quotient="0."${fractionalPart}
else
fractionalPart=${quotient:(-$rescaleFactor)}
_shellmath_round "$fractionalPart" "$__shellmath_precision"
_shellmath_getReturnValue fractionalPart
quotient=${quotient:0:(-$rescaleFactor)}"."${fractionalPart}
fi
# Determine the sign of the quotient
if ((isNegative1 != isNegative2)); then
quotient="-"$quotient
fi
if ((isTesting)); then
# Trim zeros. (Requires decimal point and zero tail.)
if [[ "$quotient" =~ [\.].*0$ ]]; then
# If the decimal point IMMEDIATELY precedes the 0s, remove that too
[[ $quotient =~ [\.]?0+$ ]]
quotient=${quotient%"${BASH_REMATCH[0]}"}
fi
fi
# Convert to scientific notation if appropriate
if ((isScientific1 || isScientific2)); then
_shellmath_numToScientific "${quotient%.*}" "${quotient#*.}"
_shellmath_getReturnValue quotient
fi
# Note the result, print if running "normally", and return
_shellmath_setReturnValue "$quotient"
if ((isVerbose)); then
echo "$quotient"
fi
return "$__shellmath_SUCCESS"
}
|