File: lattice.cpp

package info (click to toggle)
basix 0.0.1~git20210122.4f10ef2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 696 kB
  • sloc: cpp: 3,987; python: 1,918; makefile: 33
file content (349 lines) | stat: -rw-r--r-- 10,587 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
// Copyright (c) 2020 Chris Richardson & Garth Wells
// FEniCS Project
// SPDX-License-Identifier:    MIT

#include "lattice.h"
#include "cell.h"
#include "lagrange.h"
#include "quadrature.h"
#include <Eigen/Dense>

using namespace basix;

namespace
{
//-----------------------------------------------------------------------------
Eigen::ArrayXd warp_function(int n, Eigen::ArrayXd& x)
{
  [[maybe_unused]] auto [pts, wts]
      = quadrature::gauss_lobatto_legendre_line_rule(n + 1);
  wts.setZero();

  pts *= 0.5;
  for (int i = 0; i < n + 1; ++i)
    pts[i] += (0.5 - static_cast<double>(i) / static_cast<double>(n));

  FiniteElement L = create_dlagrange(cell::type::interval, n);
  Eigen::MatrixXd v = L.tabulate(0, x)[0];
  return v * pts.matrix();
}
//-----------------------------------------------------------------------------

} // namespace

//-----------------------------------------------------------------------------
Eigen::ArrayXXd lattice::create(cell::type celltype, int n,
                                lattice::type lattice_type, bool exterior)
{
  const double h = 1.0 / static_cast<double>(n);

  switch (celltype)
  {
  case cell::type::point:
    return Eigen::ArrayXXd::Zero(1, 1);
  case cell::type::interval:
  {
    if (n == 0)
      return Eigen::ArrayXXd::Constant(1, 1, 0.5);

    Eigen::ArrayXd x;
    if (exterior)
      x = Eigen::VectorXd::LinSpaced(n + 1, 0.0, 1.0);
    else
      x = Eigen::VectorXd::LinSpaced(n - 1, h, 1.0 - h);

    if (lattice_type == lattice::type::gll_warped)
      x += warp_function(n, x);

    return x;
  }
  case cell::type::quadrilateral:
  {
    if (n == 0)
      return Eigen::ArrayXXd::Constant(1, 2, 0.5);

    Eigen::ArrayXd r;
    if (exterior)
      r = Eigen::VectorXd::LinSpaced(n + 1, 0.0, 1.0);
    else
      r = Eigen::VectorXd::LinSpaced(n - 1, h, 1.0 - h);

    if (lattice_type == lattice::type::gll_warped)
      r += warp_function(n, r);

    const int m = r.size();
    Eigen::ArrayX2d x(m * m, 2);
    int c = 0;
    for (int j = 0; j < m; ++j)
      for (int i = 0; i < m; ++i)
        x.row(c++) << r[i], r[j];

    return x;
  }
  case cell::type::hexahedron:
  {
    if (n == 0)
      return Eigen::ArrayXXd::Constant(1, 3, 0.5);

    Eigen::ArrayXd r;
    if (exterior)
      r = Eigen::VectorXd::LinSpaced(n + 1, 0.0, 1.0);
    else
      r = Eigen::VectorXd::LinSpaced(n - 1, h, 1.0 - h);
    if (lattice_type == lattice::type::gll_warped)
      r += warp_function(n, r);

    const int m = r.size();
    Eigen::ArrayXXd x(m * m * m, 3);
    int c = 0;
    for (int k = 0; k < m; ++k)
      for (int j = 0; j < m; ++j)
        for (int i = 0; i < m; ++i)
          x.row(c++) << r[i], r[j], r[k];

    return x;
  }
  case cell::type::triangle:
  {
    if (n == 0)
      return Eigen::ArrayXXd::Constant(1, 2, 1.0 / 3.0);

    // Warp points: see Hesthaven and Warburton, Nodal Discontinuous Galerkin
    // Methods, pp. 175-180

    const int b = exterior ? 0 : 1;

    // Points
    Eigen::ArrayX2d p((n - 3 * b + 1) * (n - 3 * b + 2) / 2, 2);

    // Displacement from GLL points in 1D, scaled by 1/(r(1-r))
    Eigen::ArrayXd r = Eigen::VectorXd::LinSpaced(2 * n + 1, 0.0, 1.0);
    Eigen::ArrayXd wbar = warp_function(n, r);
    const auto s = r.segment(1, 2 * n - 1);
    wbar.segment(1, 2 * n - 1) /= s * (1 - s);

    int c = 0;
    for (int j = b; j < (n - b + 1); ++j)
    {
      for (int i = b; i < (n - b + 1 - j); ++i)
      {
        const int l = n - j - i;
        const double x = r[2 * i];
        const double y = r[2 * j];
        const double a = r[2 * l];
        p.row(c) << x, y;
        if (lattice_type == lattice::type::gll_warped)
        {
          p(c, 0) += x * (a * wbar(n + i - l) + y * wbar(n + i - j));
          p(c, 1) += y * (a * wbar(n + j - l) + x * wbar(n + j - i));
        }

        ++c;
      }
    }

    return p;
  }
  case cell::type::tetrahedron:
  {
    if (n == 0)
      return Eigen::ArrayXXd::Constant(1, 3, 0.25);

    const int b = exterior ? 0 : 1;
    Eigen::ArrayX3d p((n - 4 * b + 1) * (n - 4 * b + 2) * (n - 4 * b + 3) / 6,
                      3);
    Eigen::ArrayXd r = Eigen::VectorXd::LinSpaced(2 * n + 1, 0.0, 1.0);
    Eigen::ArrayXd wbar = warp_function(n, r);
    const auto s = r.segment(1, 2 * n - 1);
    wbar.segment(1, 2 * n - 1) /= s * (1 - s);
    int c = 0;
    for (int k = b; k < (n - b + 1); ++k)
    {
      for (int j = b; j < (n - b + 1 - k); ++j)
      {
        for (int i = b; i < (n - b + 1 - j - k); ++i)
        {
          const int l = n - k - j - i;
          const double x = r[2 * i];
          const double y = r[2 * j];
          const double z = r[2 * k];
          const double a = r[2 * l];
          p.row(c) << x, y, z;
          if (lattice_type == lattice::type::gll_warped)
          {
            const double dx = x
                              * (a * wbar(n + i - l) + y * wbar(n + i - j)
                                 + z * wbar(n + i - k));
            const double dy = y
                              * (a * wbar(n + j - l) + z * wbar(n + j - k)
                                 + x * wbar(n + j - i));
            const double dz = z
                              * (a * wbar(n + k - l) + x * wbar(n + k - i)
                                 + y * wbar(n + k - j));
            p(c, 0) += dx;
            p(c, 1) += dy;
            p(c, 2) += dz;
          }

          ++c;
        }
      }
    }

    return p;
  }
  case cell::type::prism:
  {
    if (n == 0)
    {
      Eigen::ArrayXXd x = Eigen::ArrayXXd::Constant(1, 3, 1.0 / 3.0);
      x(0, 2) = 0.5;
      return x;
    }

    const Eigen::ArrayXXd tri_pts
        = lattice::create(cell::type::triangle, n, lattice_type, exterior);
    const Eigen::ArrayXXd line_pts
        = lattice::create(cell::type::interval, n, lattice_type, exterior);

    Eigen::ArrayX3d x(tri_pts.rows() * line_pts.rows(), 3);
    x.leftCols(2) = tri_pts.replicate(line_pts.rows(), 1);
    for (int i = 0; i < line_pts.rows(); ++i)
      x.block(i * tri_pts.rows(), 2, tri_pts.rows(), 1) = line_pts(i, 0);
    return x;
  }
  case cell::type::pyramid:
  {
    if (n == 0)
    {
      Eigen::ArrayXXd x = Eigen::ArrayXXd::Constant(1, 3, 0.4);
      x(0, 2) = 0.2;
      return x;
    }
    else
    {
      // Interpolate warp factor along interval
      std::tuple<Eigen::ArrayXXd, Eigen::ArrayXd> pw
          = quadrature::gauss_lobatto_legendre_line_rule(n + 1);
      Eigen::VectorXd pts = std::get<0>(pw) * 0.5;
      for (int i = 0; i < n + 1; ++i)
        pts[i] += (0.5 - static_cast<double>(i) / static_cast<double>(n));
      FiniteElement L = create_dlagrange(cell::type::interval, n);

      // Get interpolated value at r in range [-1, 1]
      auto w = [&](double r) {
        Eigen::ArrayXd rr = Eigen::ArrayXd::Constant(1, 0.5 * (r + 1.0));
        Eigen::VectorXd v = L.tabulate(0, rr)[0].row(0);
        return v.dot(pts);
      };

      int b = (exterior == false) ? 1 : 0;
      n -= b * 3;
      int m = (n + 1) * (n + 2) * (2 * n + 3) / 6;
      Eigen::ArrayX3d points(m, 3);
      int c = 0;
      for (int k = 0; k < n + 1; ++k)
        for (int j = 0; j < n + 1 - k; ++j)
          for (int i = 0; i < n + 1 - k; ++i)
          {
            double x = h * (i + b);
            double y = h * (j + b);
            double z = h * (k + b);

            if (lattice_type == lattice::type::gll_warped)
            {
              // Barycentric coordinates of triangle in x-z plane
              const double l1 = x;
              const double l2 = z;
              const double l3 = 1 - x - z;
              // Barycentric coordinates of triangle in y-z plane
              const double l4 = y;
              const double l5 = z;
              const double l6 = 1 - y - z;

              // b1-b6 are the blending factors for each edge
              double b1, f1, f2;
              if (std::fabs(l1) < 1e-12)
              {
                b1 = 1.0;
                f1 = 0.0;
                f2 = 0.0;
              }
              else
              {
                b1 = 2.0 * l3 / (2.0 * l3 + l1) * 2.0 * l2 / (2.0 * l2 + l1);
                f1 = l1 / (l1 + l4);
                f2 = l1 / (l1 + l6);
              }

              // r1-r4 are the edge positions for each of the z>0 edges
              // calculated so that they use the barycentric coordinates
              // of the triangle, if the point lies on a triangular face.
              // f1-f4 are face selecting functions, which blend between
              // adjacent triangular faces
              const double r1 = (l2 - l3) * f1 + (l5 - l6) * (1 - f1);
              const double r2 = (l2 - l3) * f2 + (l5 - l4) * (1 - f2);

              double b2;
              if (std::fabs(l2) < 1e-12)
                b2 = 1.0;
              else
                b2 = 2.0 * l3 / (2.0 * l3 + l2) * 2.0 * l1 / (2.0 * l1 + l2);

              double b3, f3, f4;
              if (std::fabs(l3) < 1e-12)
              {
                b3 = 1.0;
                f3 = 0.0;
                f4 = 0.0;
              }
              else
              {
                b3 = 2.0 * l2 / (2.0 * l2 + l3) * 2.0 * l1 / (2.0 * l1 + l3);
                f3 = l3 / (l3 + l4);
                f4 = l3 / (l3 + l6);
              }

              const double r3 = (l2 - l1) * f3 + (l5 - l6) * (1.0 - f3);
              const double r4 = (l2 - l1) * f4 + (l5 - l4) * (1.0 - f4);

              double b4;
              if (std::fabs(l4) < 1e-12)
                b4 = 1.0;
              else
                b4 = 2 * l6 / (2.0 * l6 + l4) * 2.0 * l5 / (2.0 * l5 + l4);

              double b5;
              if (std::fabs(l5) < 1e-12)
                b5 = 1.0;
              else
                b5 = 2.0 * l6 / (2.0 * l6 + l5) * 2.0 * l4 / (2.0 * l4 + l5);

              double b6;
              if (std::fabs(l6) < 1e-12)
                b6 = 1.0;
              else
                b6 = 2.0 * l4 / (2.0 * l4 + l6) * 2.0 * l5 / (2.0 * l5 + l6);

              double dx = -b3 * b4 * w(r3) - b3 * b6 * w(r4) + b2 * w(l1 - l3);
              double dy = -b1 * b6 * w(r2) - b3 * b6 * w(r4) + b5 * w(l4 - l6);
              double dz = b1 * b4 * w(r1) + b1 * b6 * w(r2) + b3 * b4 * w(r3)
                          + b3 * b6 * w(r4);

              x += dx;
              y += dy;
              z += dz;
            }

            points.row(c++) << x, y, z;
          }

      return points;
    }
  }
  default:
    throw std::runtime_error("Unsupported cell for lattice");
  }
}

//-----------------------------------------------------------------------------