File: test_nedelec.py

package info (click to toggle)
basix 0.0.1~git20210122.4f10ef2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 696 kB
  • sloc: cpp: 3,987; python: 1,918; makefile: 33
file content (251 lines) | stat: -rw-r--r-- 9,894 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) 2020 Chris Richardson & Matthew Scroggs
# FEniCS Project
# SPDX-License-Identifier: MIT

import basix
import numpy
import pytest
import sympy
from .test_lagrange import sympy_disc_lagrange


def sympy_nedelec(celltype, n):
    x = sympy.Symbol("x")
    y = sympy.Symbol("y")
    z = sympy.Symbol("z")

    from sympy import S
    topology = basix.topology(celltype)
    geometry = S(basix.geometry(celltype).astype(int))
    dummy = [sympy.Symbol("DUMMY1"), sympy.Symbol("DUMMY2"), sympy.Symbol("DUMMY3")]

    funcs = []
    if celltype == basix.CellType.triangle:
        tdim = 2
        for i in range(n):
            for j in range(n - i):
                for d in range(2):
                    funcs += [[x**j * y**i if k == d else 0 for k in range(2)]]
        for i in range(n):
            funcs += [[x ** (n - 1 - i) * y ** (i + 1),
                       -x ** (n - i) * y ** i]]
        mat = numpy.empty((len(funcs), len(funcs)), dtype=object)

        # edge tangents
        if n == 1:
            edge_basis = [sympy.Integer(1)]
        else:
            edge_basis = sympy_disc_lagrange(basix.CellType.interval, n - 1)
        edge_basis = [a.subs(x, dummy[0]) for a in edge_basis]
        for i, f in enumerate(funcs):
            j = 0
            for edge in topology[1]:
                edge_geom = [geometry[t, :] for t in edge]
                tangent = edge_geom[1] - edge_geom[0]
                norm = sympy.sqrt(sum(i ** 2 for i in tangent))
                tangent = [i / norm for i in tangent]
                param = [(1 - dummy[0]) * a + dummy[0] * b for a, b in zip(edge_geom[0], edge_geom[1])]

                for g in edge_basis:
                    integrand = sum((f_i * v_i) for f_i, v_i in zip(f, tangent))

                    integrand = integrand.subs(x, param[0]).subs(y, param[1])

                    integrand *= g * norm

                    mat[i, j] = integrand.integrate((dummy[0], 0, 1))
                    j += 1

        # interior dofs
        if n > 1:
            if n == 2:
                face_basis = [sympy.Integer(1)]
            else:
                face_basis = sympy_disc_lagrange(basix.CellType.triangle, n - 2)
            for i, f in enumerate(funcs):
                j = n * 3
                for g in face_basis:
                    for vec in [(1, 0), (0, 1)]:
                        integrand = sum((f_i * v_i) for f_i, v_i in zip(f, vec)) * g

                        mat[i, j] = integrand.integrate((x, 0, 1 - y)).integrate((y, 0, 1))
                        j += 1

    elif celltype == basix.CellType.tetrahedron:
        tdim = 3
        for i in range(n):
            for j in range(n - i):
                for k in range(n - i - j):
                    for d in range(3):
                        funcs += [[x**k * y**j * z**i if m == d else 0 for m in range(3)]]
        if n == 1:
            funcs += [[y, -x, sympy.Integer(0)], [z, sympy.Integer(0), -x], [sympy.Integer(0), z, -y]]
        elif n == 2:
            funcs += [
                [y ** 2, -x * y, sympy.Integer(0)],
                [x * y, -x ** 2, sympy.Integer(0)],
                [z * y, -z * x, sympy.Integer(0)],
                [sympy.Integer(0), y * z, -y ** 2],
                [sympy.Integer(0), z ** 2, -z * y],
                [sympy.Integer(0), x * z, -x * y],
                [x * z, sympy.Integer(0), -x ** 2],
                [z ** 2, sympy.Integer(0), -z * x],
            ]
        elif n == 3:
            funcs += [
                [x ** 2 * y, -x ** 3, sympy.Integer(0)],
                [x ** 2 * z, sympy.Integer(0), -x ** 3],
                [sympy.Integer(0), x ** 2 * z, -x ** 2 * y],
                [x * y ** 2, -x ** 2 * y, sympy.Integer(0)],
                [2 * x * y * z, -x ** 2 * z, -x ** 2 * y],
                [sympy.Integer(0), x * y * z, -x * y ** 2],
                [x * z ** 2, sympy.Integer(0), -x ** 2 * z],
                [sympy.Integer(0), x * z ** 2, -x * y * z],
                [y ** 3, -x * y ** 2, sympy.Integer(0)],
                [9 * y ** 2 * z, -4 * x * y * z, -5 * x * y ** 2],
                [sympy.Integer(0), y ** 2 * z, -y ** 3],
                [9 * y * z ** 2, -5 * x * z ** 2, -4 * x * y * z],
                [sympy.Integer(0), y * z ** 2, -y ** 2 * z],
                [z ** 3, sympy.Integer(0), -x * z ** 2],
                [sympy.Integer(0), z ** 3, -y * z ** 2],
            ]
        else:
            raise NotImplementedError

        mat = numpy.empty((len(funcs), len(funcs)), dtype=object)

        # edge tangents
        if n == 1:
            edge_basis = [sympy.Integer(1)]
        else:
            edge_basis = sympy_disc_lagrange(basix.CellType.interval, n - 1)
        edge_basis = [a.subs(x, dummy[0]) for a in edge_basis]
        for i, f in enumerate(funcs):
            j = 0
            for edge in topology[1]:
                edge_geom = [geometry[t, :] for t in edge]
                tangent = edge_geom[1] - edge_geom[0]
                norm = sympy.sqrt(sum(i ** 2 for i in tangent))
                tangent = [i / norm for i in tangent]
                param = [(1 - dummy[0]) * a + dummy[0] * b for a, b in zip(edge_geom[0], edge_geom[1])]

                for g in edge_basis:
                    integrand = sum((f_i * v_i) for f_i, v_i in zip(f, tangent))
                    integrand = integrand.subs(x, param[0]).subs(y, param[1]).subs(z, param[2])
                    integrand *= g * norm
                    mat[i, j] = integrand.integrate((dummy[0], 0, 1))
                    j += 1

        # face dofs
        if n > 1:

            def dot(a, b):
                return sum(i * j for i, j in zip(a, b))

            def cross(a, b):
                assert len(a) == 3 and len(b) == 3
                return [a[1] * b[2] - a[2] * b[1],
                        a[2] * b[0] - a[0] * b[2],
                        a[0] * b[1] - a[1] * b[0]]

            if n == 2:
                face_basis = [sympy.Integer(1)]
            else:
                face_basis = sympy_disc_lagrange(basix.CellType.triangle, n - 2)
            face_basis = [a.subs(x, dummy[0]).subs(y, dummy[1]) for a in face_basis]
            for i, f in enumerate(funcs):
                j = n * 6
                for face in topology[2]:
                    face_geom = [geometry[t, :] for t in face]
                    axes = [face_geom[1] - face_geom[0], face_geom[2] - face_geom[0]]
                    norm = sympy.sqrt(sum(i**2 for i in cross(axes[0], axes[1])))

                    scaled_axes = []
                    for a in axes:
                        scaled_axes.append([k / norm for k in a])

                    param = [a + dummy[0] * b + dummy[1] * c for a, b, c in zip(face_geom[0], *axes)]
                    for g in face_basis:
                        for vec in scaled_axes:
                            integrand = dot(vec, f)
                            integrand = integrand.subs(x, param[0]).subs(y, param[1]).subs(z, param[2])
                            integrand *= g * norm

                            mat[i, j] = integrand.integrate((dummy[0], 0, 1 - dummy[1])).integrate((dummy[1], 0, 1))
                            j += 1
        # interior dofs
        if n > 2:
            if n == 3:
                interior_basis = [sympy.Integer(1)]
            else:
                interior_basis = sympy_disc_lagrange(basix.CellType.tetrahedron, n - 3)
            for i, f in enumerate(funcs):
                j = n * 6 + 4 * n * (n - 1)
                for g in interior_basis:
                    for vec in [(1, 0, 0), (0, 1, 0), (0, 0, 1)]:
                        integrand = sum(f_i * v_i for f_i, v_i in zip(f, vec))
                        integrand *= g

                        mat[i, j] = integrand.integrate((x, 0, 1 - y - z)).integrate((y, 0, 1 - z)).integrate((z, 0, 1))
                        j += 1

    mat = sympy.Matrix(mat)
    mat = mat.inv()
    g = []
    for dim in range(tdim):
        for r in range(mat.shape[0]):
            g += [sum([v * funcs[i][dim] for i, v in enumerate(mat.row(r))])]

    return g


@pytest.mark.parametrize("order", [1, 2, 3])
def test_tri(order):
    celltype = basix.CellType.triangle
    g = sympy_nedelec(celltype, order)
    x = sympy.Symbol("x")
    y = sympy.Symbol("y")
    nedelec = basix.Nedelec("triangle", order)
    pts = basix.create_lattice(celltype, 6, basix.LatticeType.equispaced, True)
    nderiv = 3
    wtab = nedelec.tabulate(nderiv, pts)

    for kx in range(nderiv):
        for ky in range(0, nderiv - kx):
            wsym = numpy.zeros_like(wtab[0])
            for i in range(len(g)):
                wd = sympy.diff(g[i], x, kx, y, ky)
                for j, p in enumerate(pts):
                    wsym[j, i] = wd.subs([(x, p[0]), (y, p[1])])

            assert(numpy.isclose(wtab[basix.index(kx, ky)], wsym).all())


@pytest.mark.parametrize("order", [1, 2, 3])
def test_tet(order):
    celltype = basix.CellType.tetrahedron
    g = sympy_nedelec(celltype, order)
    x = sympy.Symbol("x")
    y = sympy.Symbol("y")
    z = sympy.Symbol("z")
    nedelec = basix.Nedelec("tetrahedron", order)

    pts = basix.create_lattice(celltype, 6, basix.LatticeType.equispaced, True)
    nderiv = 1
    wtab = nedelec.tabulate(nderiv, pts)

    for k in range(nderiv + 1):
        for q in range(k + 1):
            for kx in range(q + 1):
                ky = q - kx
                kz = k - q

                wsym = numpy.zeros_like(wtab[0])
                for i in range(len(g)):
                    wd = sympy.diff(g[i], x, kx, y, ky, z, kz)
                    for j, p in enumerate(pts):
                        wsym[j, i] = wd.subs([(x, p[0]),
                                              (y, p[1]),
                                              (z, p[2])])

                assert(numpy.isclose(wtab[basix.index(kx, ky, kz)], wsym).all())