1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
# Copyright (c) 2020 Chris Richardson & Matthew Scroggs
# FEniCS Project
# SPDX-License-Identifier: MIT
import basix
import numpy
import pytest
import sympy
from .test_lagrange import sympy_disc_lagrange
def sympy_rt(celltype, n):
x = sympy.Symbol("x")
y = sympy.Symbol("y")
z = sympy.Symbol("z")
from sympy import S
topology = basix.topology(celltype)
geometry = S(basix.geometry(celltype).astype(int))
dummy = [sympy.Symbol("DUMMY1"), sympy.Symbol("DUMMY2"), sympy.Symbol("DUMMY3")]
funcs = []
if celltype == basix.CellType.triangle:
tdim = 2
for i in range(n):
for j in range(n - i):
for d in range(2):
funcs += [[x**j * y**i if k == d else 0 for k in range(2)]]
for i in range(n):
funcs.append([x ** (n - i) * y ** i, x ** (n - 1 - i) * y ** (i + 1)])
mat = numpy.empty((len(funcs), len(funcs)), dtype=object)
# edge normals
for i, f in enumerate(funcs):
if n == 1:
edge_basis = [sympy.Integer(1)]
else:
edge_basis = sympy_disc_lagrange(basix.CellType.interval, n - 1)
edge_basis = [a.subs(x, dummy[0]) for a in edge_basis]
j = 0
for edge in topology[1]:
edge_geom = [geometry[t, :] for t in edge]
tangent = edge_geom[1] - edge_geom[0]
norm = sympy.sqrt(sum(i ** 2 for i in tangent))
tangent = [i / norm for i in tangent]
normal = [-tangent[1], tangent[0]]
param = [(1 - dummy[0]) * a + dummy[0] * b for a, b in zip(edge_geom[0], edge_geom[1])]
for g in edge_basis:
integrand = sum((f_i * v_i) for f_i, v_i in zip(f, normal))
integrand = integrand.subs(x, param[0]).subs(y, param[1])
integrand *= g * norm
mat[i, j] = integrand.integrate((dummy[0], 0, 1))
j += 1
# interior dofs
if n > 1:
for i, f in enumerate(funcs):
if n == 2:
face_basis = [sympy.Integer(1)]
else:
face_basis = sympy_disc_lagrange(basix.CellType.triangle, n - 2)
j = n * 3
for g in face_basis:
for vec in [(1, 0), (0, 1)]:
integrand = sum((f_i * v_i) for f_i, v_i in zip(f, vec)) * g
mat[i, j] = integrand.integrate((x, 0, 1 - y)).integrate((y, 0, 1))
j += 1
elif celltype == basix.CellType.tetrahedron:
tdim = 3
for i in range(n):
for j in range(n - i):
for k in range(n - i - j):
for d in range(3):
funcs += [[x**k * y**j * z**i if m == d else 0 for m in range(3)]]
for j in range(n):
for k in range(n - j):
p = x ** (n - 1 - j - k) * y ** j * z ** k
funcs.append((x * p, y * p, z * p))
mat = numpy.empty((len(funcs), len(funcs)), dtype=object)
# face normals
for i, f in enumerate(funcs):
if n == 1:
face_basis = [sympy.Integer(1)]
else:
face_basis = sympy_disc_lagrange(basix.CellType.triangle, n - 1)
face_basis = [a.subs(x, dummy[0]).subs(y, dummy[1]) for a in face_basis]
j = 0
for face in topology[2]:
face_geom = [geometry[t, :] for t in face]
axes = [face_geom[1] - face_geom[0], face_geom[2] - face_geom[0]]
normal = [axes[0][1] * axes[1][2] - axes[0][2] * axes[1][1],
axes[0][2] * axes[1][0] - axes[0][0] * axes[1][2],
axes[0][0] * axes[1][1] - axes[0][1] * axes[1][0]]
norm = sympy.sqrt(sum(i**2 for i in normal))
normal = [k / norm for k in normal]
param = [a + dummy[0] * b + dummy[1] * c for a, b, c in zip(face_geom[0], *axes)]
for g in face_basis:
integrand = sum(f_i * v_i for f_i, v_i in zip(f, normal))
integrand = integrand.subs(x, param[0]).subs(y, param[1]).subs(z, param[2])
integrand *= g * norm
mat[i, j] = integrand.integrate((dummy[0], 0, 1 - dummy[1])).integrate((dummy[1], 0, 1))
j += 1
assert j == 2 * n * (n + 1)
if n > 1:
for i, f in enumerate(funcs):
if n == 2:
interior_basis = [sympy.Integer(1)]
else:
interior_basis = sympy_disc_lagrange(basix.CellType.tetrahedron, n - 2)
j = 2 * n * (n + 1)
for g in interior_basis:
for vec in [(1, 0, 0), (0, 1, 0), (0, 0, 1)]:
integrand = sum(f_i * v_i for f_i, v_i in zip(f, vec))
integrand *= g
mat[i, j] = integrand.integrate((x, 0, 1 - y - z)).integrate((y, 0, 1 - z)).integrate((z, 0, 1))
j += 1
mat = sympy.Matrix(mat)
mat = mat.inv()
g = []
for dim in range(tdim):
for r in range(mat.shape[0]):
g += [sum([v * funcs[i][dim] for i, v in enumerate(mat.row(r))])]
return g
@pytest.mark.parametrize("order", [1, 2, 3])
def test_tri(order):
celltype = basix.CellType.triangle
g = sympy_rt(celltype, order)
x = sympy.Symbol("x")
y = sympy.Symbol("y")
rt = basix.create_element("Raviart-Thomas", "triangle", order)
pts = basix.create_lattice(celltype, 1, basix.LatticeType.equispaced, True)
nderiv = 3
wtab = rt.tabulate(nderiv, pts)
for kx in range(nderiv):
for ky in range(0, nderiv - kx):
wsym = numpy.zeros_like(wtab[0])
for i in range(len(g)):
wd = sympy.diff(g[i], x, kx, y, ky)
for j, p in enumerate(pts):
wsym[j, i] = wd.subs([(x, p[0]), (y, p[1])])
assert(numpy.isclose(wtab[basix.index(kx, ky)], wsym).all())
@pytest.mark.parametrize("order", [1, 2, 3])
def test_tet(order):
celltype = basix.CellType.tetrahedron
g = sympy_rt(celltype, order)
x = sympy.Symbol("x")
y = sympy.Symbol("y")
z = sympy.Symbol("z")
rt = basix.create_element("Raviart-Thomas", "tetrahedron", order)
pts = basix.create_lattice(celltype, 5, basix.LatticeType.equispaced, True)
nderiv = 1
wtab = rt.tabulate(nderiv, pts)
for k in range(nderiv + 1):
for q in range(k + 1):
for kx in range(q + 1):
ky = q - kx
kz = k - q
wsym = numpy.zeros_like(wtab[0])
for i in range(len(g)):
wd = sympy.diff(g[i], x, kx, y, ky, z, kz)
for j, p in enumerate(pts):
wsym[j, i] = wd.subs([(x, p[0]),
(y, p[1]),
(z, p[2])])
assert(numpy.isclose(wtab[basix.index(kx, ky, kz)], wsym).all())
|