1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
// Copyright (c) 1997 Philip A. Hardin (pahardin@cs.utexas.edu)
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License v2 or later.
#include "gob.h"
// Notes:
// gob is an abbreviation for Game OBject
// STL is an abbreviation for the Standard Template Library
// static data members
FriendlyFire gob::ffire= dangerous;
bool gob::fancy= true;
bool gob::classSolid= true;
coord gob::gravity= -1./32; // gravitational acceleration
gobList* gob::gobs= NULL;
/*=========================================================================*/
// gobList class
gob* gobList::Update(gob* gobPtr, gobList::iterator gi) {
if (gobPtr != *gi) // if the new gob ptr is different from the orig one,
delete *gi; // delete the orig gob
if (gobPtr) // if new gob ptr is non-NULL,
*gi= gobPtr; // replace orig gob ptr w/ new gob ptr
else // else
erase(gi); // erase the orig gob ptr from the gobList
return gobPtr;
}
/*=========================================================================*/
// the newVel.Scale() is overriden to be zero.
gob::gob(const tcomp& newPos, const tcomp& newVel, gob *newParent)
: pos(newPos),
vel(newVel),
parent(newParent),
solid(classSolid),
lastPosAng(pos.Ang()+ang3d(1,1,1))
{
vel.Scale()= pt3d(0,0,0);
UpdateWorldPos();
}
//---------------------------------------------------------------------------
/* Make this gob "act" for one game iteration. "Acting" typically includes
one or more of the following:
o morphing the gob (changing its shape or class)
o setting the gob's velocity
o moving the gob
o interacting with other gobs
Act() returns:
o NULL, if the gob is destroyed,
o a ptr to a new gob, if the gob becomes a different object (as in the
tank to helicopter transformation), or
o the "this" ptr, otherwise
*/
gob* gob::Act() {
vel.Scale()= pt3d(0,0,0); // for right now... -PAH
pos += vel;
return Interact();
}
//---------------------------------------------------------------------------
// Returns the center of the bounding box around this gob, in world coords
pt3d gob::Center() const {
return Shape()->Box().Center() * WorldPos();
}
//---------------------------------------------------------------------------
// Returns true if globalPt lies inside of this gob.
// Implemented to test against the gob's bounding box, but can be overridden
// in derived classes with a more accurate test if necessary.
// In: inclusive = true -> consider a pt on the surface contained
// = false -> consider a pt on the surface not contained
bool gob::Contains(const pt3d& globalPt, bool inclusive) {
if (inclusive)
return Shape()->Box().ContainsInclusively(globalPt << WorldPos());
else
return Shape()->Box().ContainsExclusively(globalPt << WorldPos());
}
//---------------------------------------------------------------------------
// Returns the distance from a viewer's eye position to this gob.
// In: eyePos = viewer's eye position, in world coords
coord gob::DistFromViewer(const pt3d& eyePos) const {
pt3d center= Shape()->Box().Center() >> WorldPos(); // in world coords
return (eyePos - center).Dist(); // or use FastDist()?
}
//---------------------------------------------------------------------------
// Draw this gob.
// In: worldToView = a world-to-view coordinates transformation matrix
// viewNum = which view cache to use (helps performance)
// eyePos = viewer's eye position, in world coords
// colors = the color table to use when drawing
void gob::Draw(bbGfxTarget& gt, tmtrx& worldToView, int viewNum,
const pt3d& eyePos, const ulong colors[]) {
// using cast to ensure that results are comparable -- cw
while (static_cast<long>(views.size()) <= static_cast<long>(viewNum))
views.push_back(view());
views[viewNum].Update(Shape(),WorldPos()*worldToView);
gt.SetForeground(gt.Colors()[Color()]);
Shape()->Draw(views[viewNum].pts,
gt,
eyePos << WorldPos(),
//pt3d(0,0,0) << views[viewNum].modelToView,
gt.gfxSize,
Solid(),
colors ? colors : gt.Colors());
gt.SetForeground(gt.Black());
}
//---------------------------------------------------------------------------
/* GetViewOrder()
This function adds this gob's ptr to a list of gobs to be drawn. If this
gob has any child gobs (i.e. if this is a multi-part gob), the childrens'
ptrs are added to the list too. The list of gobs will be drawn beginning
with the last gob first.
The purpose of this function is to allow multi-part gobs to be drawn
correctly. The eye position can be checked to decide whether this gob
should be drawn first, or whether its part(s) should be drawn first.
This essentially allows a BSP tree to implicitly embedded into multi-part
gobs...
*/
//---------------------------------------------------------------------------
/* HitByBall(ballGob*)
HitByShll(shllGob*)
HitByVhcl(vhclGob*)
These functions detect and handle collisions between this gob and the
ball gob, a shell gob, and a vehicle gob.
By default, the base gob class does not detect collisions with balls/
shells/vehicles. To make a derived gob class detect and handle these
collisions, override the appropriate HitBy*() function(s).
The HitBy*() functions return two gob ptrs, one for this gob and one for
the "hitter" gob. These returned ptrs have the same semantics as the
ptr returned by Act().
*/
//---------------------------------------------------------------------------
/* Interact after moving.
This function is called by Act() after a gob is moved, so that the gob
may react appropriately to the results of its motion.
Typically, Interact() will:
o Adjust the gob's position if it passes some intrinsic limit. For
example, the angular position of the tank's gun barrel is intrinsically
limited to be between 0 and 25 degrees vertically.
o Update the gob's world position (i.e. its model-to-world transformation
matrix)
o Test for interaction with other gobs. This step requires that the
gob's world position is up-to-date.
Upon entrance to Interact(), the gob's world position (worldPos) is
typically *not* up-to-date. Upon exit, Interact() must ensure that
worldPos consistent with pos and the worldPos of this gob's parent.
Interact()'s return value has the same semantics as Act()'s return value.
*/
gob* gob::Interact() {
UpdateWorldPos();
return this;
}
//---------------------------------------------------------------------------
// Tests if this gob and another gob have collided, and applies a "kick" if
// they have. The other gob is usually the ball gob.
// Returns true if a kick was applied.
bool gob::KickIfHit(gob *ball, coord maxVel, coord zvel, coord acc,
bool kickBoth) {
pt3d ballPos= ball->WorldPos().Cart();
ballPos.z += ball->Shape()->Box().Center().z;
if (Contains(ballPos)) {
pt3d selfToBall= ball->WorldPos().Cart() -WorldPos().Cart();
pt3d kick= selfToBall;
if (zvel==0) kick.z= zvel;
kick.Normalize(acc);
if (zvel != 1 and Altitude() <0.001) kick.z= zvel;
if (kick.Dot(ball->vel.Cart()) <maxVel)
ball->vel.Cart() += kick;
if (kickBoth and (-kick).Dot(vel.Cart()) <maxVel)
vel.Cart() -= kick;
return true;
}
return false;
}
//---------------------------------------------------------------------------
// ModelViewPos() returns a gob's view position and direction in model
// coordinates.
//---------------------------------------------------------------------------
/* Push this gob because it was hit by a shell.
The effects of the shell's hit are both cartesian pushing and angular
spinning. Hits in line with the center of the hit gob tend to induce
only pushing; hits on the edge of the hit gob tend to induce only
spinning.
*/
void gob::PushFrom(const gob *shell, double pushMult, double spinMult,
coord groundBounce) {
coord R= Shape()->FarthestDist(); // approx. radius of self
//assert(R >0);
// compute distance from shell's (infinite) path to center of self
pt2d shellToSelf= pos.Cart() -shell->pos.Cart();
pt2d shellVelPerp= shell->vel.Cart().pt2d::Left90().Normalized();
coord d= shellToSelf.Dot( shellVelPerp );
if (d >R) d= R; // use assert here?
if (d <-R) d= -R;
double torque= d/R;
pt3d push= shell->vel.Cart().Normalized((1 -ABS(torque)) *pushMult);
if (groundBounce != 0 and Altitude() <0.001)
push.z= groundBounce;
ang2d xyspin= (ang2d) ((MA_PI/64) *torque *spinMult);
vel.Ang().xy += xyspin;
vel.Cart() += push;
}
//---------------------------------------------------------------------------
// TeamNum() returns the number of the team associated with this gob, or -1
// if this gob isn't associated with any team.
//---------------------------------------------------------------------------
// Bounce this gob against the ground, if its altitude drops below zero.
void gob::TestForGroundBounce(const pt3d& bounceFactor, bool wantUpdate) {
coord altitude= Altitude();
if (altitude <0) {
pos.Cart().z -= 2*altitude; // bounce off ground
vel.Cart().x *= bounceFactor.x;
vel.Cart().y *= bounceFactor.y;
vel.Cart().z *= bounceFactor.z;
if (vel.Cart().z +2*gravity <= 0) {
vel.Cart().z= 0;
pos.Cart().z= -Shape()->Box().low.z;
}
if (wantUpdate)
UpdateWorldPos();
}
}
//---------------------------------------------------------------------------
// Update this gob's world position, i.e. its model-to-world transformation
// matrix.
void gob::UpdateWorldPos() {
if (parent)
worldPos= pos * parent->WorldPos();
else {
// this test saves computation time, but is a bit of a kludge... -PAH
if (pos.Ang()==lastPosAng)
worldPos.Cart()= pos.Cart();
else {
worldPos= pos;
lastPosAng= pos.Ang();
}
}
}
//---------------------------------------------------------------------------
// Returns a gob's view position & direction in world coordinates
tmtrx gob::ViewPos() const {
return ModelViewPos() * WorldPos();
}
//---------------------------------------------------------------------------
// Returns true if this gob is hit by a ray which starts at "startPos" and
// points in direction "dir". Not too exact, and only considers 2-D.
// Used to determine when a vehicle has the ball lined up with a building.
bool gob::WillBeHitBy(const pt3d& startPos, const pt3d& dir) const {
pt3d low= Shape()->Box().low;
pt3d high= Shape()->Box().high;
pt2d p1= pt3d(high.x,low.y,0) * WorldPos() -startPos;
pt2d p2= pt3d(high.x,high.y,0) * WorldPos() -startPos;
// This gob won't be hit if it isn't in "front" of the projectile
if (dir.pt2d::Dot(p1) <0 and dir.pt2d::Dot(p2) <0)
return false;
// This gob will be hit if the projectile's path passes between the two
// corners on this gob's front
pt2d left= dir.Left90();
return (left.Dot(p1) >0) != (left.Dot(p2) >0);
}
//===========================================================================
// Draw a region2d.
// off is in screen coords.
void Draw(rgn2 *rgn, gfxTarget& gt, const pt2d& off, ang2d ang,
const pt2d& sc, bool solid) {
#ifdef __GNUC__
pt2d pts[100];
XPoint xpts[100];
#else
pt2d *pts= new pt2d[rgn->numSides];
XPoint *xpts= new XPoint[rgn->numSides+1];
#endif
rgn->TransformTo(off,ang,sc,pts);
forii(rgn->numSides) {
xpts[i].x= (short) pts[i].x;
xpts[i].y= (short) pts[i].y;
}
xpts[rgn->numSides].x= (short) pts[0].x;
xpts[rgn->numSides].y= (short) pts[0].y;
if (solid)
XFillPolygon(gt.disp,gt.win,gt.gc,xpts,rgn->numSides+1,Nonconvex,
CoordModeOrigin);
else
XDrawLines(gt.disp,gt.win,gt.gc,xpts,rgn->numSides+1,CoordModeOrigin);
#ifndef __GNUC__
delete [] xpts;
delete [] pts;
#endif
}
//---------------------------------------------------------------------------
// Simulates the motion of a shell and a target, and returns info about the
// closest point of approach. The shell is influenced by gravity, but the
// target is not.
void GetClosestApproach(const pt3d& shellInitPos, const pt3d& shellInitVel,
const pt3d& tgtInitPos, const pt3d& tgtInitVel,
coord grav, int maxShotTime,
coord& closestDist, double& closestTime,
pt3d& closestShellPos, pt3d& closestTgtPos) {
closestDist= 1000; // one kilometer!
closestTime= 0;
pt3d tgtPos= tgtInitPos;
pt3d shellPos= shellInitPos;
pt3d shellVel= shellInitVel;
forii(maxShotTime) {
coord d= (tgtPos-shellPos).Dist();
if (d <closestDist) {
closestDist= d;
closestTime= i;
closestShellPos= shellPos;
closestTgtPos= tgtPos;
}
tgtPos += tgtInitVel;
shellPos += shellVel;
shellVel.z += grav;
}
}
|