1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
// Copyright (c) 1997 Philip A. Hardin (pahardin@cs.utexas.edu)
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License v2 or later.
#include "panel3d.h"
/*=========================================================================*/
void panel3d::SetNormalAndConvexity(const pt3d pts[]) {
isConvex= true;
if (ptNums.Num() >=3) {
// compute normal
// use Newell's formulation (Foley, Van Dam, Feiner, & Hughes, pp. 477)
normal= pt3d(0,0,0);
// Remember, ptNums[0] is the same as ptNums[ptNums.Num()-1],
// so we have to be careful below:
int j= ptNums.Num()-2;
forii(ptNums.Num()-1) {
const pt3d& pt1= pts[ptNums[j]];
const pt3d& pt2= pts[ptNums[i]];
normal.x += (pt1.y - pt2.y) *(pt1.z + pt2.z);
normal.y += (pt1.z - pt2.z) *(pt1.x + pt2.x);
normal.z += (pt1.x - pt2.x) *(pt1.y + pt2.y);
j =i;
}
normal.Normalize();
// Remember, ptNums[0] is the same as ptNums[ptNums.Num()-1],
// so we have to be careful below:
fori(ptNums.Num()-1) {
j= (i+1) % (ptNums.Num()-1); // index of second point number
int k= (i+2) % (ptNums.Num()-1); // index of third point number
// compute the normal for this particular sequence of three points
pt3d norm3= (pts[ptNums[j]]-pts[ptNums[i]]).CrossProd(
pts[ptNums[k]]-pts[ptNums[j]]);
// if the normal for these 3 pts is in the opposite direction as
// the official normal for the polygon, then either these 3 pts form
// a concave bend, so we know that this polygon is _not_ convex!
if (norm3.Dot(normal) <0)
isConvex= false;
}
}
}
/*-------------------------------------------------------------------------*/
/* In: srcPtNums = array of point numbers which define this panel,
terminated by a negative value
Out: srcPtNums = points one element past the terminating negative value
Reads an initial number that indicates if the panel is single-sided
(zero) or double-sided (non-zero). Then reads point numbers which define
the panel until a negative point number is seen. The number of pt nums
should equal the number of points in the panel.
*/
void panel3d::Init(int *&srcPtNums, pt3d pts[])
{ if (ptNums.Num() >0) ptNums.Empty();
doubleSided= *(srcPtNums++);
while (*srcPtNums >=0)
ptNums.Add(*srcPtNums++);
ptNums.Add(ptNums[0]);
srcPtNums++; // advance past negative value
SetNormalAndConvexity(pts);
}
/*-------------------------------------------------------------------------*/
// The region2d must have at least 2 sides, or else the panel3d will
// simply be empty.
panel3d::panel3d(const region2d& rgn, fastPts& pts,
const pt3d& offset, const ang3d& ang, const pt3d& scale,
bool isDoubleSided)
{ pt3d pt;
int ptNum,firstPtNum;
doubleSided= isDoubleSided;
if (rgn.numSides >=2) {
forii(rgn.numSides) {
pt.x= rgn.sides[i].pt.x;
pt.y= rgn.sides[i].pt.y;
pt.z= 0;
ptNum= pts.Add((pt*scale >> ang) +offset);
if (i==0) firstPtNum= ptNum;
ptNums.Add(ptNum);
}
ptNums.Add(firstPtNum);
SetNormalAndConvexity(pts.Array());
}
}
/*-------------------------------------------------------------------------*/
panel3d::panel3d(const panel3d& p, pt3d panelPts[], fastPts& pts,
const pt3d& offset, const ang3d& ang, const pt3d& scale) {
doubleSided= p.doubleSided;
forii(p.ptNums.Num())
{ pt3d *pt= &panelPts[p.ptNums[i]];
int ptNum= pts.Add( ((*pt)*scale >> ang) +offset);
ptNums.Add(ptNum);
}
SetNormalAndConvexity(pts.Array());
}
|