File: xform.C

package info (click to toggle)
battleball 2.0-13
  • links: PTS
  • area: main
  • in suites: woody
  • size: 1,016 kB
  • ctags: 3,097
  • sloc: cpp: 15,310; makefile: 48; csh: 34
file content (338 lines) | stat: -rw-r--r-- 9,753 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Copyright (c) 1997 Philip A. Hardin (pahardin@cs.utexas.edu)
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License v2 or later.


#include <math.h>
#include <iomanip.h>
#include "xform.h"



//===========================================================================
// Extend the pt3d class!
// This must be done at the top of this file, because code below (may) assume
// the pt3d has these operators.


/*-------------------------------------------------------------------------*/
pt3d operator*(const pt3d& p, const tmtrx& t) {
  return pt3d(t[0][0]*p.x +t[1][0]*p.y +t[2][0]*p.z +t[3][0],
	      t[0][1]*p.x +t[1][1]*p.y +t[2][1]*p.z +t[3][1],
	      t[0][2]*p.x +t[1][2]*p.y +t[2][2]*p.z +t[3][2]);
}


/*-------------------------------------------------------------------------*/
/* To untransform, we subtract the translational part of the transform
   from the point and then multiply by the inverse of the 3x3 part of the
   transform.
   WARNING:  tmtrx is assumed to have unity scaling
*/
pt3d operator/(const pt3d& p, const tmtrx& t) {
  pt3d p2(p.x-t[3][0],p.y-t[3][1],p.z-t[3][2]);
  return pt3d(t[0][0]*p2.x +t[0][1]*p2.y +t[0][2]*p2.z,
	      t[1][0]*p2.x +t[1][1]*p2.y +t[1][2]*p2.z,
	      t[2][0]*p2.x +t[2][1]*p2.y +t[2][2]*p2.z);
}



//===========================================================================
void tmtrx::Copy(const fourby3 newm) {
  forii(4) forij(3) m[i][j]= newm[i][j];
}


//---------------------------------------------------------------------------
bool tmtrx::operator==(const tmtrx& t) const {
  forii(4) forij(3)
    if (m[i][j] != t[i][j]) return false;
  return true;
}


//---------------------------------------------------------------------------
// Returns true if the rotation parts (i.e. the 3x3 parts) of this matrix
// and t's matrix are the same; returns false otherwise

bool tmtrx::RotationSame(const tmtrx& t) const {
  forii(3) forij(3)
    if (m[i][j] != t[i][j]) return false;
  return true;
}


//---------------------------------------------------------------------------
// Set the 3x3 part of the matrix from ang and scale.  The implementation of
// this function is a bit goofy because it is (sort of) optimized for speed.

void tmtrx::SetMtrx(const ang3d& ang, const pt3d& scale) {
  double sinxy= sinTbl[ang.xy&(2*MA_PI-1)];
  double cosxy= cosTbl[ang.xy&(2*MA_PI-1)];
  double sinxz= sinTbl[ang.xz&(2*MA_PI-1)];
  double cosxz= cosTbl[ang.xz&(2*MA_PI-1)];
  double sinyz= sinTbl[ang.yz&(2*MA_PI-1)];
  double cosyz= cosTbl[ang.yz&(2*MA_PI-1)];
  
  int index= (ang.xy != 0) | ((ang.xz != 0) <<1) | ((ang.yz != 0) <<2);
  switch (index)
  { case 0:
      m[0][0]= m[1][1]= m[2][2]= 1.0;
      m[1][0]= m[2][0]= m[0][1]= m[2][1]= m[0][2]= m[1][2]= 0.0;
      break;
    case 1:
      m[2][2]= 1.0;
      m[2][0]= m[2][1]= m[0][2]= m[1][2]= 0.0;
      m[0][0]= m[1][1]= cosxy;
      m[1][0]= -sinxy;
      m[0][1]= sinxy;
      break;
    case 2:
      m[1][1]= 1.0;
      m[1][0]= m[2][1]= m[0][1]= m[1][2]= 0.0;
      m[0][0]= m[2][2]= cosxz;
      m[2][0]= -sinxz;
      m[0][2]= sinxz;
      break;
    case 4:
      m[0][0]= 1.0;
      m[1][0]= m[2][0]= m[0][1]= m[0][2]= 0.0;
      m[1][1]= m[2][2]= cosyz;
      m[2][1]= -sinyz;
      m[1][2]= sinyz;
      break;
    case 3:
    case 5:
    case 6:
    case 7:
      m[0][0]= cosxy*cosxz;
      m[1][0]= -cosxy*sinxz*sinyz -sinxy*cosyz;
      m[2][0]= -cosxy*sinxz*cosyz +sinxy*sinyz;
      m[0][1]= sinxy*cosxz;
      m[1][1]= -sinxy*sinxz*sinyz +cosxy*cosyz;
      m[2][1]= -sinxy*sinxz*cosyz -cosxy*sinyz;
      m[0][2]= sinxz;
      m[1][2]= cosxz*sinyz;
      m[2][2]= cosxz*cosyz;
      break;
  }

  if (scale != pt3d(1,1,1)) {
    m[0][0] *= scale.x;
    m[1][0] *= scale.y;
    m[2][0] *= scale.z;
    m[0][1] *= scale.x;
    m[1][1] *= scale.y;
    m[2][1] *= scale.z;
    m[0][2] *= scale.x;
    m[1][2] *= scale.y;
    m[2][2] *= scale.z;
  }
}


//---------------------------------------------------------------------------
// Return the angular rotation part of the tmtrx as an and3d.
// Believe it or not, floating point round-off error is a real problem in
// this function, hence the use of the epsilon constant.
// WARNING:  assumes the tmtrx has unity scaling

ang3d tmtrx::Ang() const {
  const double eps= 1e-9;      // epsilon
  double xy,xz,yz;

  xz= asin(m[0][2]*(1-eps));   // returns a value in [-M_PI/2, +M_PI/2]
  double cosxz= cos(xz);       // should always be non-negative
  if (cosxz <=eps) {
    yz= 0;                     // can I do better than this? -PAH
    xy= acos(m[1][1]*(1-eps));
    if (m[0][0] <0)
      xy= M_PI-xy;
  }
  else {
    yz= asin ((m[1][2] / cosxz) * (1-eps));
    if (m[2][2] <0)
      yz= M_PI-yz;
    xy= asin ((m[0][1] / cosxz) * (1-eps));
    if (m[0][0] <0)
      xy= M_PI-xy;
  }
  return
    ang3d((ang2d)(floor(xy*MA_PI/M_PI +0.5)),
	  (ang2d)(floor(xz*MA_PI/M_PI +0.5)),
	  (ang2d)(floor(yz*MA_PI/M_PI +0.5)) );
}


//---------------------------------------------------------------------------
tmtrx tmtrx::operator*(const tmtrx& t) const {
  fourby3 dest;
  
  forii(3)    // row
    forij(3)  // column
      dest[i][j]= m[i][0]*t[0][j] +m[i][1]*t[1][j] +m[i][2]*t[2][j];
  forij(3)
    dest[3][j]= m[3][0]*t[0][j] +m[3][1]*t[1][j] +m[3][2]*t[2][j] +t[3][j];
  return tmtrx(dest);
}


//---------------------------------------------------------------------------
// Return the inverse of the tmtrx.
// WARNING:  assumes the tmtrx has unity scaling

tmtrx tmtrx::Inverse() const {
  //  double det=  m[0][0]*(m[1][1]*m[2][2] - m[1][2]*m[2][1])
  //            -m[0][1]*(m[1][0]*m[2][2] - m[1][2]*m[2][0])
  //	      +m[0][2]*(m[1][0]*m[2][1] - m[1][1]*m[2][0]);
  //if (det==0.0) {cerr << "determinant is 0.\n"; return *this;}

  fourby3 dest;
  forii(3)    // row
    forij(3)  // column
      dest[i][j]= m[j][i];
  pt3d temp= pt3d(0,0,0) << (*this);
  dest[3][0]= temp.x;
  dest[3][1]= temp.y;
  dest[3][2]= temp.z;
  return tmtrx(dest);
}


ostream& operator<<(ostream& o, const tmtrx& t) {
  o << setprecision(4);
  o << t.m[0][0] << " " << t.m[0][1] << " " << t.m[0][2] << "\n";
  o << t.m[1][0] << " " << t.m[1][1] << " " << t.m[1][2] << "\n";
  o << t.m[2][0] << " " << t.m[2][1] << " " << t.m[2][2] << "\n";
  o << t.m[3][0] << " " << t.m[3][1] << " " << t.m[3][2] << "\n";
  return o << "\n";
}


//===========================================================================
// WARNING:  Assumes the tmtrx t has unity scaling.

tcomp::tcomp(const tmtrx& t)
  : cart(t.Cart()),
    ang(t.Ang()),
    scale(pt3d(1,1,1)) {}


//---------------------------------------------------------------------------
tcomp& tcomp::operator+=(tcomp& t) {
  Cart()  += t.Cart();
  Ang()   += t.Ang();
  Scale() += t.Scale();
  return *this;
}


//---------------------------------------------------------------------------
tcomp& tcomp::operator-=(tcomp& t) {
  Cart()  -= t.Cart();
  Ang()   -= t.Ang();
  Scale() -= t.Scale();
  return *this;
}


#if 0

//---------------------------------------------------------------------------
// Assumes t2.Cart() is in world coords,
//         t2.Ang()  is in world coords
tcomp tcomp::Plus(tcomp& t2) {
  fourby3 dest;
  Mtrx();    // update m
  t2.Mtrx(); // update t2.m
  
  forii(3)    // row
    forij(3)  // column
      dest[i][j]= m[i][0]*t2.m[0][j] +m[i][1]*t2.m[1][j] +m[i][2]*t2.m[2][j];
  forij(3)
    dest[3][j]= m[3][j] +t2.m[3][j];

  return tcomp(dest);
}


//---------------------------------------------------------------------------
// Assumes t2.Cart() is in world coords,
//         t2.Ang()  is in model coords
tcomp tcomp::Plus2(tcomp& t2) {
  fourby3 dest;
  Mtrx();    // update m
  t2.Mtrx(); // update t2.m
  
  forii(3)    // row
    forij(3)  // column
      dest[i][j]= t2.m[i][0]*m[0][j] +t2.m[i][1]*m[1][j] +t2.m[i][2]*m[2][j];
  forij(3)
    dest[3][j]= m[3][j] +t2.m[3][j];

  return tcomp(dest);
}


//---------------------------------------------------------------------------
// Clamp near-zero elements to zero...necessary b/c of fp roundoff error
tcomp tcomp::Clamped() {
  const double eps= 1e-9; // epsilon
  Mtrx();    // update m
  fourby3 dest;
  forii(4)    // row;  notice: 4, not 3
    forij(3)  // column
      dest[i][j]= (ABS(m[i][j]) < eps) ? 0 : m[i][j];
  return tcomp(dest);
}


    
//---------------------------------------------------------------------------
// For each row?column? in the 3x3 part of the mtrx, force sum of squares of
// elements to be 1; necessary b/c of fp roundoff error
 tcomp tcomp::Clamped2() {
  Mtrx();    // update m
  fourby3 dest;

  forij(3) { // column
    double squareSum= m[0][j]*m[0][j] +m[1][j]*m[1][j] +m[2][j]*m[2][j];
    forii(3)  // row
      dest[i][j]= m[i][j] / sqrt(squareSum);
  }
  forii(3) { // row
    double squareSum= dest[i][0]*dest[i][0] +dest[i][1]*dest[i][1] +dest[i][2]*dest[i][2];
    forij(3)  // row
      dest[i][j]= dest[i][j] / sqrt(squareSum);
  }
  dest[3][0]= m[3][0];
  dest[3][1]= m[3][1];
  dest[3][2]= m[3][2];
  return tcomp(dest);
}

    
//---------------------------------------------------------------------------
// Clamp elements to a resolution of 10e-9in 10^9 ...necessary b/c of fp 
// roundoff error
tcomp tcomp::Clamped1() {
  const double eps= 1e-9; // epsilon
  Mtrx();    // update m
  fourby3 dest;
  forii(4)    // row;  notice: 4, not 3
    forij(3)  // column
      dest[i][j]= floor(m[i][j]/eps+0.5)*eps;
  return tcomp(dest);
}

#endif

    
//---------------------------------------------------------------------------
ostream& operator<<(ostream& o, const tcomp& t) {
  return o << setprecision(4)
	   << "cart: " << t.cart
	   << "  ang: " << t.ang
	   << "  scale: " << t.scale << "\n";
}