File: Cell.java

package info (click to toggle)
bbmap 39.20%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 26,008 kB
  • sloc: java: 312,743; sh: 18,096; python: 5,247; ansic: 2,074; perl: 96; makefile: 39; xml: 38
file content (660 lines) | stat: -rwxr-xr-x 22,096 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
package ml;

import java.util.Arrays;
import java.util.Random;

import shared.Tools;
import shared.Vector;

public class Cell extends Source {
	
	/*--------------------------------------------------------------*/
	/*----------------        Initialization        ----------------*/
	/*--------------------------------------------------------------*/
	
	public Cell(int id_, int activationType, int lpos_, int layer_, int maxLayer_, 
			int prevLayerStart_, int nextLayerStart_, int wid,
			float[] values_, float[] eOverNetArray_) {
		id=id_;
//		type=activationType;
		function=Function.getFunction(activationType);
		lpos=lpos_;
		layer=layer_;
		maxLayer=maxLayer_;
		values=values_;
		eOverNetArray=eOverNetArray_;
		assert(values.length==wid);
		prevLayerStart=prevLayerStart_;
		nextLayerStart=nextLayerStart_;
		
		//Initialize later
//		inputs=in;
//		outputs=out;
//		weights=(inputs==null || inputs.length<1 ? null : new float[inputs.length]);
//		deltas=(inputs==null || inputs.length<1 ? null : new float[inputs.length]);
		
		assert(lpos>=0 & lpos<wid);
	}
	
	/*--------------------------------------------------------------*/
	/*----------------         Non-Mutators         ----------------*/
	/*--------------------------------------------------------------*/
	
	public void summateDense(float[] valuesIn) {
		sum=bias;
		assert(valuesIn.length==weights.length) : valuesIn.length+", "+weights.length;
		sum+=Vector.fma(weights, valuesIn);
		final float v=(float)activation(sum);
		setValue(v);
	}
	
	public void summateSparse(float[] valuesIn, int edgeBlockSize) {
		sum=bias;
		sum+=Vector.fma(weights, valuesIn, inputs, edgeBlockSize, Vector.SIMD_FMA_SPARSE);
		final float v=(float)activation(sum);
		setValue(v);
	}
	
	public float calcError(float ideal) {
		float e=ideal-value();
		return 0.5f*e*e;
	}
	
	synchronized public boolean check() {
//		assert(false);
		
		if(!CellNet.DENSE) {
			assert(layer==maxLayer || outputs!=null) :
				layer+", "+maxLayer+", "+lpos+", "+id();
		}
		
		if(value!=values[lpos] && (value!=-1 && values[lpos]!=0)) {
			assert(false) : id+", "+layer+", "+lpos+": "+value+", "+values[lpos]+", "+Arrays.toString(values);
			return false;
		}
		if(eOverNet!=eOverNetArray[lpos]) {
			assert(false) : id+", "+layer+", "+lpos+": "+eOverNet+", "+eOverNetArray[lpos]+", "+Arrays.toString(values);
			return false;
		}
		if(layer>0) {
			assert(weights!=null);
			assert(CellNet.DENSE==(inputs==null));
//			assert(weights2.length==weights.length);
			assert(deltas==null || deltas.length==weights.length);
//			for(int i=0; i<weights2.length; i++) {
//				Edge e=outputs.get(i);
//				if(e.weight2!=weights2[i]) {
//					assert(false) : id+", "+layer+", "+lpos+": "+e.weight2+", "+weights2[i];
//					return false;
//				}
//			}
		}else {
//			assert(inputs==null || outputs.isEmpty())  : id+", "+layer+", "+lpos+": "+weights2+": "+outputs+"\n"+toString()+"\n";
			assert(inputs==null || outputs==null)  : id+", "+layer+", "+lpos+": "+deltas+": "+outputs+"\n"+toString()+"\n";
		}
		return true;
	}

	/*--------------------------------------------------------------*/
	/*----------------           Mutators           ----------------*/
	/*--------------------------------------------------------------*/
	
	void applyUpdates(float invSamples, float alpha) {//only called once per epoch
		if(layer<1) {return;}
		adjustBias(invSamples, alpha);
		for(int i=0; i<weights.length; i++) {
			final float w=weights[i];
			
			final float d3=(float)(deltas[i]*invSamples*alpha);
			float w4=w+d3;
			{
				final float absW4=Math.abs(w4);
				if(absW4>Math.abs(w) && absW4>edgeAmplitudeIncreaseThresh) {
					//Very sensitive; strong values break convergence.
					//0.98 seems OK though.  Goal is to keep edges low.
					//.94 is too extreme.  .96 seems OK.
					w4=w+edgeAmplitudeIncreaseMult*d3;//Slow down increase in edge magnitude
				}
			}
			deltas[i]=0;

			if((w!=0 || !CellNet.DENSE) && Math.abs(w4)>Float.MIN_NORMAL) {weights[i]=w4;}
		}
	}
	
	public void addError(float e) {
		assert(error>=0);
		error+=e;
	}
	
	public void clearError() {
		error=0;
	}
	
	public void clearTemp() {
//		bias2=0;
		biasDelta=0;
		error=0;
		if(layer<1) {return;}
//		Arrays.fill(weights2, 0);
		assert(deltas!=null) : id()+", "+layer;
		Arrays.fill(deltas, 0);
	}
	
	public void setBias(float b2, boolean ignoreAssertion) {
		assert(layer>0);
//		float dif=Tools.absdif(bias, b2);
//		assert(ignoreAssertion || dif<0.1f || dif<0.2f*bias) : dif+", "+bias+", "+b2; //just checking for bugs.
//		if(!(ignoreAssertion || dif<0.1f || dif<0.2f*bias)) {System.out.print("*");}
//		if(!ignoreAssertion) {System.err.println(bias);}
		bias=b2;
	}
	
	private void adjustBias(float invSamples, float alpha) {
		assert(layer>0);
		assert(alpha>0) : alpha;
//		System.err.println(String.format("b"+id()+": %.5f -> %.5f * %.2f = %.5f",
//				bias, bias2, invSamples, bias2*invSamples));
//		float b=((float)bias2)*invSamples;
		float bFromDelta=(float)(bias+biasDelta*invSamples*alpha*biasAlphaMult);
//		assert(Tools.absdif(b, bFromDelta)<0.00001) : "b="+b+", bFD="+bFromDelta+", bias="+bias+", bias2="+bias2+", bD="+biasDelta+", invS="+invSamples+", a="+alpha+", bAM="+biasAlphaMult
//			+", layer="+layer+" cid="+id;
		setBias(bFromDelta, false);
//		bias2=0;
		biasDelta=0;
	}
	
	public void addError(Cell c2) {
		error+=c2.error;
	}
	
	@Override
	public void setValue(float v) {
		assert(layer==0 || v==(float)activation(sum)) : v+", "+activation(sum)+", "+sum;
//		assert(value==values[lpos]);
		values[lpos]=value=v;
	}
	
	/*--------------------------------------------------------------*/
	
	public final double activation(double x) {
		return function.activate(x);
	}
	
	public final double derivativeXFX(double x, double fx) {
		double d=function.derivativeXFX(x, fx);
		assert(!Double.isNaN(d)) : x+", "+fx+", "+d;
		return d;
	}
	
	/*--------------------------------------------------------------*/
	
	//TODO: Vectorize?  Final layer is usually small though
	void updateEdgesFinalLayerDense(float target, float[] valuesIn, float weightMult) {
		//assert(check());
		final float v=value();
		eTotalOverOut=calcETotalOverOut(v, target, weightMult);
		outOverNet=(float)derivativeXFX(sum, v);
//		final double eTotalOverOut_X_outOverNet=eTotalOverOut*outOverNet;
		eOverNet=eOverNetArray[lpos]=eTotalOverOut*outOverNet;
		
		for(int i=0; i<weights.length; i++) {
//			assert(e.source.check());
			final float netOverWeight=valuesIn[i];//e.source.value();
//			assert(valuesIn[i]==e.source.value) : valuesIn[i]+", "+e.source.value+", "+valuesIn.length+", "+inputs.size();
			final float eTotalOverWeight=eOverNet*netOverWeight;
			
//			final double w=weights[i];
//			final double incr=w-alpha*eTotalOverWeight;
//			weights2[i]+=incr;

			deltas[i]-=eTotalOverWeight;
			//TODO: Alpha is not really needed here;
			//the result could be accumulated and multiplied by alpha at the end
		}
		{
			assert(layer>0);
//			bias2+=bias-alpha*eOverNet*biasAlphaMult;
			biasDelta-=eOverNet;
		}
		//assert(check());
	}
	
	/*--------------------------------------------------------------*/
	
	public void updateEdgesHiddenLayerDense(float[] valuesIn, float[] eOverNetNext, float[] weightsOut) {
		//assert(check());
//		eTotalOverOut=0;
		final float v=value();
		assert(v==values[lpos]) : v+", "+values[lpos]+//Also fires on NaN, but that shouldn't happen...
			"\n"+Arrays.toString(values)+
			"\n"+Arrays.toString(weights)+"\n";
		outOverNet=(float)derivativeXFX(sum, v);

		assert(CellNet.DENSE);
		if(!CellNet.SPECIAL_FMA) {
			eTotalOverOut=Vector.fma(weightsOut, eOverNetNext);
		}
		
//		if(CellNet.SIMD && eOverNetNext.length>=16) {
//			eTotalOverOut=shared.Vector.fma(weightsOut, eOverNetNext);
//		}else {
//			for(int dest=0; dest<eOverNetNext.length; dest++){
//				final float netOverOut=weightsOut[dest];
//				final float eOverNetDest=eOverNetNext[dest];
//				final float eOverOut=eOverNetDest*netOverOut;
//				
//				eTotalOverOut+=eOverOut;
//			}
//		}
		
		eOverNetArray[lpos]=eOverNet=eTotalOverOut*outOverNet;
		
//		for(int source=0; source<valuesPrev.length; source++) {
//			final float netOverWeight=valuesPrev[source];
//			final float eTotalOverWeight=eOverNet*netOverWeight;
//			
////			final double incr=weights[source]-alpha*eTotalOverWeight;
////			weights2[source]+=incr;
//
//			deltas[source]-=eTotalOverWeight;
//		}
		Vector.addProduct(deltas, valuesIn, -eOverNet);
		
//		if(layer>0){
		{
			assert(layer>0) : layer;
//			bias2+=bias-alpha*eOverNet*biasAlphaMult;//Bias adjusts slower than edges
			biasDelta-=eOverNet;
		}
		//assert(check());
	}
	
	public void updateEdgesHiddenLayerSparse(float[] valuesIn, float[] eOverNetNext,
			float[] weightsOut, int edgeBlockSize) {
		//assert(check());
//		eTotalOverOut=0;
		final float v=value();
		assert(v==values[lpos]) : v+", "+values[lpos]+//Also fires on NaN, but that shouldn't happen...
			"\n"+Arrays.toString(values)+
			"\n"+Arrays.toString(weights)+"\n";
		outOverNet=(float)derivativeXFX(sum, v);

		assert(!CellNet.DENSE);
		eTotalOverOut=Vector.fma(weightsOut, eOverNetNext, outputs, 1, false);
		
//		if(CellNet.SIMD && eOverNetNext.length>=16) {
//			eTotalOverOut=shared.Vector.fma(weightsOut, eOverNetNext);
//		}else {
//			for(int dest=0; dest<eOverNetNext.length; dest++){
//				final float netOverOut=weightsOut[dest];
//				final float eOverNetDest=eOverNetNext[dest];
//				final float eOverOut=eOverNetDest*netOverOut;
//				
//				eTotalOverOut+=eOverOut;
//			}
//		}
		
		eOverNetArray[lpos]=eOverNet=eTotalOverOut*outOverNet;
		
//		for(int source=0; source<valuesPrev.length; source++) {
//			final float netOverWeight=valuesPrev[source];
//			final float eTotalOverWeight=eOverNet*netOverWeight;
//			
////			final double incr=weights[source]-alpha*eTotalOverWeight;
////			weights2[source]+=incr;
//
//			deltas[source]-=eTotalOverWeight;
//		}
		Vector.addProduct(deltas, valuesIn, inputs, -eOverNet, edgeBlockSize);
		
//		if(layer>0){
		{
			assert(layer>0) : layer;
//			bias2+=bias-alpha*eOverNet*biasAlphaMult;//Bias adjusts slower than edges
			biasDelta-=eOverNet;
		}
		//assert(check());
	}
	
	/*--------------------------------------------------------------*/
	
	public void accumulate(Cell c2) {
		//assert(check());
		//assert(c2.check());
		error+=c2.error;
//		bias2+=c2.bias2;
		biasDelta+=c2.biasDelta;
//		if(layer>0) {
//			final double[] c2w2=c2.weights2;
//			for(int i=0; i<weights2.length; i++) {
//				weights2[i]+=c2w2[i];
//			}
//		}
		if(layer>0) {
//			final float[] c2d=c2.deltas;
//			for(int i=0; i<deltas.length; i++) {
//				deltas[i]+=c2d[i];
//			}
			Vector.add(deltas, c2.deltas);
		}
	}
	
	/*--------------------------------------------------------------*/
	
	public void anneal(float strength, Random randy) {
		if(layer<1){return;}
		if(annealBias) {
			final float abs=Math.abs(bias);
			float xb=strength*(randy.nextFloat()-randy.nextFloat())*biasAnnealMult;
			if(abs<0.2f) {xb=xb*(Tools.max(abs*5, 0.2f));} //Weaker anneal for weaker bias //TODO: Make lower limit even weaker
			setBias(bias+xb, true);
		}
		for(int i=0; i<weights.length; i++) {
//			final Edge e=inputs.get(i);
			final float w=weights[i];
			if(w!=0) {
				//			assert(w==e.weight());
				final float abs=Math.abs(w);
				float xe=strength*(randy.nextFloat()-randy.nextFloat());
				if(abs<lowWeightAnnealCutoff) {xe=xe*(Tools.max(abs*lowWeightAnnealMult, lowWeightAnnealCutoff));} //Weaker anneal for weaker weight
				if(Math.abs(w+xe)>abs) {xe*=edgeAmplitudeIncreaseMult;} //Weaker anneal when it increases absolute magnitude of weight
				final float w2=w+xe;
				//			e.setWeight(w2);
				if(Math.abs(w2)>Float.MIN_NORMAL) {weights[i]=w2;}
				//			assert(w2==e.weight());
			}
		}
	}
	
	public void setFrom(Cell c, boolean copyDelta) {
		eTotalOverOut=c.eTotalOverOut;
		outOverNet=c.outOverNet;
		bias=c.bias;
//		type=c.type;
		function=c.function;
		value=c.value;
		sum=c.sum;
		error=c.error;
//		if(layer==0){return;}
		if(weights==null) {
			weights=(c.weights==null ? null : Arrays.copyOf(c.weights, c.weights.length));
			assert(inputs==null);
			inputs=(c.inputs==null ? null : Arrays.copyOf(c.inputs, c.inputs.length));
		}else{
			Vector.copy(weights, c.weights);
			if(!CellNet.DENSE) {Vector.copy(inputs, c.inputs);}
		}
		
		if(outputs==null) {
			outputs=(c.outputs==null ? null : Arrays.copyOf(c.outputs, c.outputs.length));
		}else{
			Vector.copy(outputs, c.outputs);
		}

		biasDelta=0;
		if(copyDelta) {
			biasDelta=c.biasDelta;
			deltas=(c.deltas==null ? null : Arrays.copyOf(c.deltas, c.deltas.length));
		}else if(deltas==null){
			deltas=(weights==null ? null : new float[weights.length]);//(c.deltas==null ? null : new float[c.deltas.length]);
		}else {
			Arrays.fill(deltas, 0);
		}
		assert(Tools.equals(inputs, c.inputs));
		assert(Tools.equals(outputs, c.outputs));
		assert(Tools.equals(weights, c.weights));
//		assert(false) : outputs+", "+c.outputs;
		
		//assert(check());
		//assert(c.check());
//		assert(c.weights.length==weights.length) : "\n"+inputs+"\n"+c.inputs;
	}
	
	/*--------------------------------------------------------------*/
	/*----------------          Overrides           ----------------*/
	/*--------------------------------------------------------------*/
	
	@Override
	public String toString() {
		StringBuilder sb=new StringBuilder();
//		sb.append("C"+id()+": v="+String.format("%.4f, b=%.4f, b2=%.4f, e=%.5f", value(), bias, bias2, error));
		sb.append("C"+id()+": v="+String.format("%.4f, b=%.4f, b2=%.4f, e=%.5f", value(), bias, biasDelta, error));
		if(!terminal()) {
			sb.append(", Edges: {");
			if(CellNet.DENSE) {
				int prevBase=id-lpos-weights.length;
				for(int i=0; i<weights.length; i++) {
					//TODO: Could use source array or source value array here
//					return String.format("C"+(prevBase+i)+"->C"+id+",%.3f,w?=%.4f,w2=%.4f,d=%.4f; ", -1, weights[i], weights2[i], deltas[i]);
					sb.append(String.format("C"+(prevBase+i)+"->C"+id+",%.3f,w?=%.4f,d=%.4f; ", -1, weights[i], deltas[i]));
				}
			}else {
				for(int i=0; i<weights.length; i++) {
					final int prev=inputs[i]+prevLayerStart;
					sb.append(String.format("C"+(prev)+"->C"+id+",%.3f,w?=%.4f,d=%.4f; ", -1, weights[i], deltas[i]));
				}
			}
			sb.setLength(sb.length()-2);
			sb.append("}");
		}
		return sb.toString();
	}

	@Override
	public boolean terminal() {
//		return inputs==null || inputs.isEmpty();
		return layer==0;
	}
	
	/*--------------------------------------------------------------*/
	/*----------------           Getters            ----------------*/
	/*--------------------------------------------------------------*/

	public int id() {return id;}
	public float bias() {return bias;}
	
	/*--------------------------------------------------------------*/
	/*----------------        Static Methods        ----------------*/
	/*--------------------------------------------------------------*/
	
	public static float toWeightedError(double rawError, float v, float target, float weightMult) {
		if(weightMult==0) {return (float)rawError;}
//		assert(rawError>=0) : rawError;
		float mult=toErrorMult(v, target, weightMult);
		double incr=toErrorIncr(rawError, v, target);
		assert(incr==0 || incr>=0 == rawError>=0) : incr+", "+rawError;
		return (float)((rawError+incr)*mult);
	}
	
	public static double toErrorIncr(double rawError, float v, float target) {
		double incr=0;
		if(target>cutoffForTraining) {
			if(v<=cutoffForTraining+spread) {incr=fnErrorIncr;}
		}else if(target<cutoffForTraining) {
			if(v>=cutoffForTraining-spread) {incr=fpErrorIncr;}
		}
		double ret=incr*(rawError>=0 ? 1 : -1);
		return ret;
	}
	
//	public static float toErrorMult(float v, float target) {
//		if(true) {return toErrorMult(v, target, 1);}
//		final float mult;
////		assert(cutoff-spread==lowThresh);
////		assert(cutoff+spread==highThresh);
////		if(v>target) {
////			mult=positiveErrorMult;
////			if(v>lowThresh && target<lowThresh) {
////				mult*=falsePositiveErrorMult;
////			}
////		}else{
////			mult=negativeErrorMult;
////			if(v<highThresh && target>=highThresh) {
////				mult*=falseNegativeErrorMult;
////			}
////		}
//		if(v>target) {
//			if(v>cutoff-spread && target<cutoff+spread) {
//				mult=falsePositiveErrorMult;
//			}else{
//				mult=positiveErrorMult;
//			}
//		}else{
//			if(v<cutoff+spread && target>=cutoff-spread) {
//				mult=falseNegativeErrorMult;
//			}else{
//				mult=negativeErrorMult;
//			}
//		}
//		return mult;
//	}
	
	//TODO: multFraction comes from TrainerThread.weightMult() and is basically always 1
	//It should probably be eliminated
	//But test first; it's a way of preventing fpem from being too strong early via "minweightepoch=500" or whatever
	public static float toErrorMult(float v, float target, float multFraction) {
		if(v==target) {return 0;}
		final float mult;
		final boolean positiveError=v>target;
		final boolean positiveGoal=target>cutoffForTraining;
		final boolean negativeGoal=target<cutoffForTraining;
		final boolean excess=(positiveError == positiveGoal);
//		final boolean offsides=(positiveGoal && v<)
		if(positiveError) {
			if(positiveGoal) {
				assert(excess);
				mult=excessPositiveErrorMult;
			}else if(v>cutoffForTraining-spread){//offsides; false positive
				mult=falsePositiveErrorMult;
			}else {
				mult=positiveErrorMult;
			}
		}else{//Negative error
			if(negativeGoal) {
				assert(excess);
				mult=excessNegativeErrorMult;
			}else if(v<cutoffForTraining+spread){//offsides; false negative
				mult=falseNegativeErrorMult;
			}else {
				mult=negativeErrorMult;
			}
		}
		return ((mult-1)*multFraction)+1; //multFraction=0.5, for example, returns halfway between 1.0 and mult
	}
	
	public static float calcETotalOverOut(float v, float target, float weightMult) {
		float eTotalOverOut=v-target; //Aka out-target
		final float ret=toWeightedError(eTotalOverOut, v, target, weightMult);
		return ret;
	}
	
	public static void setLowWeightAnnealCutoff(float c) {
		assert(c>=0 && c<=1);
		lowWeightAnnealCutoff=c;
		lowWeightAnnealMult=Tools.max(1f, 1f/Tools.max(lowWeightAnnealCutoff, 0.0001f));
	}
	
	/*--------------------------------------------------------------*/
	
	public final String typeString() {
		return function.name();
	}
	
	/*--------------------------------------------------------------*/
	
	//Fake legacy method
	public void updateEdgesHiddenLayerDense(float alpha, float[] valuesIn, double[] eOverNetNext, float[] weightsOut) {
		throw new RuntimeException("Wrong method, for legacy double[] version in class CellNetDouble");
	}

	//Fake legacy method
	public Cell(int size, int type, int i, int layerNum, int prevWidth, int width, int nextWidth, float[] lvals,
			double[] eons) {
		throw new RuntimeException("Legacy constructor for CellNetDouble");
	}
	
	/*--------------------------------------------------------------*/
	/*----------------            Fields            ----------------*/
	/*--------------------------------------------------------------*/
	
	public float eTotalOverOut;
	public float outOverNet;
	public float eOverNet;
	public double sum=0;
	
	public float bias;
//	private double bias2;
	private double biasDelta;
	public double error;
	private final int id;
	final int lpos;//position within layer
	final int layer;
	final int maxLayer;
	int nextWeight=0; //For use when loading networks
	
//	int type;//TODO: Change to Function.
	Function function;
	
	/*--------------------------------------------------------------*/

	final int prevLayerStart;
	final int nextLayerStart;
	
	//Lpos (layer position) of inputs
	public int[] inputs;
	public int[] outputs;
	public float[] weights;
	float[] deltas;
	
	/*--------------------------------------------------------------*/
	
	private final float[] values; 
	public final float[] eOverNetArray;
	
	/*--------------------------------------------------------------*/
	/*----------------           Statics            ----------------*/
	/*--------------------------------------------------------------*/
	
	public static int MAX_TYPE=Function.TANH;
	public static int defaultActivationType=Function.SIG;
	public static int finalLayerType=Function.RSLOG;
	public static float randomTypeRate=0.0f;

	static float biasAlphaMult=1f;
	static float biasAnnealMult=0.5f;
	static boolean annealBias=true;
	
	private static float lowWeightAnnealCutoff=0.2f;
	private static float lowWeightAnnealMult=1f/lowWeightAnnealCutoff;
	
	static float cutoffForTraining=0.5f;
	static boolean setCutoffForTraining=false;
	static boolean useMidpoint=false;

	static float positiveErrorMult=1.0f;
	static float falsePositiveErrorMult=10.5f;
	//0.2 is best for binary classification; otherwise 1.0 is probably better
	//Should be paired with adjusting the Sample pivot function.
	static float excessPositiveErrorMult=0.2f;

	static float negativeErrorMult=1.0f;
	static float falseNegativeErrorMult=10.5f;
	static float excessNegativeErrorMult=0.2f;

	//Optimal BBMerge settings at the time
//	static float positiveErrorMult=1.65f;
//	static float falsePositiveErrorMult=12.5f;
//	static float excessPositiveErrorMult=1f;
//
//	static float negativeErrorMult=0.825f;
//	static float falseNegativeErrorMult=2.7f;
//	static float excessNegativeErrorMult=1f;
	
	static float fnErrorIncr=0.01f;
	static float fpErrorIncr=0.00f;
	static float spread=0.050f;
	static float edgeAmplitudeIncreaseMult=0.98f;
	static float edgeAmplitudeIncreaseThresh=0.1f;
	
}