1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
package structures;
import java.util.ArrayList;
import java.util.Iterator;
/** A heap that tracks element location */
public final class HeapLoc<T extends SetLoc<? super T>> implements Iterable<T> {
//A good value for maxSize would be (2^N)-1
@SuppressWarnings("unchecked")
public HeapLoc(int maxSize, boolean rollover_){
int len=maxSize+1;
if((len&1)==1){len++;} //Array size is always even.
CAPACITY=maxSize;
array=(T[])new SetLoc[len];
rollover=rollover_;
// queue=new PriorityQueue<T>(maxSize);
}
public HeapLoc<T> resizeNew(int newCapacity){
HeapLoc<T> heap=new HeapLoc<T>(newCapacity, rollover);
//Technically I could just do a limited array copy,
//since all the positions will remain the same.
//TODO Add resizing the current one as an option.
for(T t : this) {
t.setLoc(-1);
heap.add(t);
}
assert(size()==heap.size());
this.clear();
return heap;
}
public boolean add(T t){
return addAndReturnLocation(t)>=0;
}
public int addAndReturnLocation(T t){
assert(t.loc()<0);
assert(size==0 || array[size]!=null);
assert(rollover || size<CAPACITY);
if(size>=CAPACITY){
if(t.compareTo(array[1])<=0){return -1;}
poll(); //Turns into a rolling buffer by removing smallest value.
// {//This is a more efficient alternative to poll() and percDown(), but the result is slightly different.
// array[1]=t;
// percUp(1);
// return true;
// }
}
assert(size<CAPACITY);
//assert(testForDuplicates());
// assert(queue.size()==size);
// queue.add(t);
assert(size==0 || array[size]!=null);
size++;
array[size]=t;
t.setLoc(size);
return percDown(size);
// assert(queue.size()==size);
// assert(queue.peek()==peek());
//assert(testForDuplicates());
}
public T peek(){
//assert(testForDuplicates());
// assert(queue.size()==size);
if(size==0){return null;}
// assert(array[1]==queue.peek()) : size+", "+queue.size()+"\n"+
// array[1]+"\n"+
// array[2]+" , "+array[3]+"\n"+
// array[4]+" , "+array[5]+" , "+array[6]+" , "+array[7]+"\n"+
// queue.peek()+"\n";
//assert(testForDuplicates());
return array[1];
}
public T poll(){
//assert(testForDuplicates());
// assert(queue.size()==size);
if(size==0){return null;}
T t=array[1];
// assert(t==queue.poll());
array[1]=array[size];
array[size]=null;
size--;
if(size>0){
array[1].setLoc(1);
percUp(1);
}
// assert(queue.size()==size);
// assert(queue.peek()==peek());
//assert(testForDuplicates());
t.setLoc(-1);
return t;
}
/** Returns the new location */
public int jiggle(T t){
final int loc=t.loc();
assert(array[loc]==t);
int x=percDown(loc);
if(x!=loc) {return x;}
return percUp(loc);
}
/** Returns the new location */
public int jiggleDown(T t){
final int loc=t.loc();
assert(array[loc]==t);
return percDown(loc);
}
/** Returns the new location */
public int jiggleUp(T t){
final int loc=t.loc();
assert(array[loc]==t);
return percDown(loc);
}
/** Returns the new location */
private int percDown(int loc){
//assert(testForDuplicates());
assert(loc>0);
if(loc==1){return loc;}
int next=loc/2;
T a=array[loc];
T b=array[next];
assert(a!=b && a!=null);
if(a.compareTo(b)<0){
array[next]=a;
array[loc]=b;
a.setLoc(next);
b.setLoc(loc);
return percDown(next);
}
return loc;
}
/** Returns the new location */
private int percUp(int loc){
//assert(testForDuplicates());
assert(loc>0 && loc<=size) : loc+", "+size;
int next1=loc*2;
int next2=next1+1;
if(next1>size){return loc;}
T a=array[loc];
T b=array[next1];
T c=array[next2];
assert(a!=b);
assert(b!=c);
assert(b!=null && a!=null);
//assert(testForDuplicates());
if(c==null || b.compareTo(c)<1){
if(a.compareTo(b)>0){
array[next1]=a;
array[loc]=b;
a.setLoc(next1);
b.setLoc(loc);
//assert(testForDuplicates());
return percUp(next1);
}
}else{
if(a.compareTo(c)>0){
array[next2]=a;
array[loc]=c;
a.setLoc(next2);
c.setLoc(loc);
//assert(testForDuplicates());
return percUp(next2);
}
}
return loc;
}
public boolean isEmpty(){
// assert((size==0) == queue.isEmpty());
return size==0;
}
public boolean hasRoom(){
return size<CAPACITY;
}
public void clear(){
// queue.clear();
for(int i=1; i<=size; i++){array[i]=null;}
size=0;
}
public int size(){
return size;
}
public static int tier(int x){
int leading=Integer.numberOfLeadingZeros(x);
return 31-leading;
}
public boolean testForDuplicates(){
for(int i=0; i<array.length; i++){
for(int j=i+1; j<array.length; j++){
if(array[i]!=null && array[i]==array[j]){return false;}
if(array[i]!=null && array[i].loc()!=i){return false;}
}
}
return true;
}
public ArrayList<T> toList(){
ArrayList<T> list=new ArrayList<T>(size);
for(int i=0, lim=size; i<lim; i++){
list.add(poll());
}
assert(isEmpty());
return list;
}
@Override
public Iterator<T> iterator() {
return new HeapIterator();
}
private class HeapIterator implements Iterator<T> {
@Override
public boolean hasNext() {return loc<=size;}
@Override
public T next() {return array[loc++];}
int loc=1;
}
private final T[] array;
public final int CAPACITY;
public final boolean rollover;
private int size=0;
// private PriorityQueue<T> queue;
}
|