File: BinMap.java

package info (click to toggle)
bbmap 39.20%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 26,024 kB
  • sloc: java: 312,743; sh: 18,099; python: 5,247; ansic: 2,074; perl: 96; makefile: 39; xml: 38
file content (193 lines) | stat: -rwxr-xr-x 6,296 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
package bin;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map.Entry;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicLong;

import shared.Tools;

public class BinMap extends BinObject implements Iterable<Cluster> {
	
	public BinMap(ArrayList<Contig> contigs) {contigList=contigs;}
	
	/** Higher is less stringent; 1.0 is neutral, 0 is exact match */
	public Cluster addOrMerge(Bin a, int minSizeToCompare, int minSizeToMerge, 
			int minSizeToAdd, Oracle oracle, Key key, int matrixRange) {
		if(minSizeToMerge>=0 && a.size()>=minSizeToMerge) {
			Cluster best=findBestCluster(a, minSizeToCompare, key, matrixRange, oracle);
			if(best!=null) {
				best.add(a);
				return best;
			}
		}
		if(minSizeToAdd>=0 && a.size()>=minSizeToAdd) {return add(a, key.set(a));}
		residual.add(a);
		return null;
	}
	
	void addAll(Collection<? extends Bin> bins, int minSize) {
		Key key=new Key();
		for(Bin b : bins) {
			if(b.size()<minSize) {
				residual.add(b);
			}else {
				add(b, key);
			}
		}
	}
	
	Cluster add(Bin a, Key key) {
		Cluster c=a.toCluster();
		if(key==null) {key=new Key();}
		key.set(a);
		ArrayList<Cluster> list=getOrMakeList(key);
		synchronized(list) {list.add(c);}
		return c;
	}
	
	public ArrayList<Cluster> getOrMakeList(Key key){
		ArrayList<Cluster> list=map.get(key);
		if(list==null) {
			map.putIfAbsent((Key)(key.clone()), new ArrayList<Cluster>(8));
			list=map.get(key);
			minGridGC=Tools.min(minGridGC, key.gcLevel);
			maxGridGC=Tools.max(maxGridGC, key.gcLevel);
			minGridDepth=Tools.min(minGridDepth, key.covLevel, key.covLevel2);
			maxGridDepth=Tools.max(maxGridDepth, key.covLevel, key.covLevel2);
			assert(minGridGC<=maxGridGC) : minGridGC+", "+maxGridGC+", "+key;
			assert(minGridDepth<=maxGridDepth);
		}
		return list;
	}
	
	public Cluster findBestCluster(Bin a, int minSizeToCompare, Key key, int matrixRange, Oracle oracle) {
		if(key==null) {key=new Key();}
		oracle.clear();
		final float gc=a.gc();
		final float depth=a.depth(0);
		final float depth2=a.depth(1);
		key.set(a);
		
		float mult=Binner.sizeAdjustMult(a.size());
		final float maxDepthRatio=1+(oracle.maxDepthRatio0-1)*mult;
		final float maxGCDif=oracle.maxGCDif0*mult;
		assert(maxDepthRatio>=1) : maxDepthRatio;
		final int minDepthLevel=Tools.max(minGridDepth, 
				key.covLevel-matrixRange, Key.quantizeDepth(depth/maxDepthRatio));
		final int maxDepthLevel=Tools.min(maxGridDepth,
				key.covLevel+matrixRange, Key.quantizeDepth(depth*maxDepthRatio));
		final int minGCLevel=Tools.max(minGridGC, key.gcLevel-matrixRange, Key.quantizeGC(gc-maxGCDif));
		final int maxGCLevel=Tools.min(maxGridGC, key.gcLevel+matrixRange, Key.quantizeGC(gc+maxGCDif));
		
		int minDepthLevel2=0;
		int maxDepthLevel2=0;
		if(a.numDepths()>1) {
			minDepthLevel2=Tools.max(minGridDepth, key.covLevel2-matrixRange, Key.quantizeDepth(depth2/maxDepthRatio));
			maxDepthLevel2=Tools.min(maxGridDepth, key.covLevel2+matrixRange, Key.quantizeDepth(depth2*maxDepthRatio));
		}
		
		if(verbose) {
			System.err.println("Using params minSizeToCompare="+minSizeToCompare+
					", maxKmerDif="+oracle.maxKmerDif0+", maxDepthRatio="+maxDepthRatio+
					", maxProduct="+oracle.maxProduct0+", maxGCDif="+maxGCDif+
					", maxCovariance="+oracle.maxCovariance0+", matrixRange="+matrixRange);
		}
		
		for(int depthLevel2=minDepthLevel2; depthLevel2<=maxDepthLevel2; depthLevel2++) {
			for(int depthLevel=minDepthLevel; depthLevel<=maxDepthLevel; depthLevel++) {
				for(int gcLevel=minGCLevel; gcLevel<=maxGCLevel; gcLevel++) {
					if(verbose) {System.err.println("Looking at depth "+depthLevel+", gc "+gcLevel);}
					key.setLevel(gcLevel, depthLevel, depthLevel2);
					ArrayList<Cluster> list=map.get(key);
					if(list!=null) {
						int idx=findBestBinIndex(a, list, minSizeToCompare, oracle);
						if(verbose && idx>=0) {System.err.println("***Set best to "+oracle.best.id());}
					}
				}
			}
		}
		return (Cluster)oracle.best;
	}
	
	private int findBestBinIndex(Bin a, ArrayList<? extends Bin> clusters, 
			int minSizeToCompare, Oracle oracle) {
		
		int bestIdx=-1;
		for(int i=0; i<clusters.size(); i++) {
			Bin b=clusters.get(i);
			if(b==null || a==b) {continue;}
			if(b.size()<minSizeToCompare) {break;}
			
			float f=oracle.similarity(a, b, 1f);
			assert(f!=0) : b.id();
			if(verbose) {
				System.err.println("Comparing to "+b.id()+"; score="+oracle.score+"/"+oracle.topScore);
			}
			if(f>oracle.topScore) {
				assert(f>0);//Actually, could be -1; or clear should set to -1
				oracle.best=b;
				oracle.bestIdx=bestIdx=i;
				oracle.topScore=f;
			}
		}
		return bestIdx;
	}
	
	ArrayList<Cluster> toList(boolean addResidue){
		ArrayList<Cluster> list=new ArrayList<Cluster>();
		for(Entry<Key, ArrayList<Cluster>> e : map.entrySet()) {
			list.addAll(e.getValue());
		}
		if(addResidue) {
			for(Bin b : residual) {
				list.add(b.cluster()==null ? b.toCluster() : b.cluster());
			}
		}
		return list;
	}
	
	@Override
	public Iterator<Cluster> iterator() {
		return toList(false).iterator();
	}
	
	public void clear(boolean clearResidual) {
		map.clear();
		if(clearResidual) {residual.clear();}	
		minGridGC=999999;
		maxGridGC=0;
		minGridDepth=999999;
		maxGridDepth=0;
	}
	
	public boolean isValid() {
		assert(isValid(contigList, true));
		assert(isValid(residual, false));
		for(ArrayList<Cluster> list : map.values()) {
			assert(isValid(list, false));
		}
		return true;
	}
	
	public int countClusters() {
		int sum=0;
		for(ArrayList<Cluster> list : map.values()) {sum+=list.size();}
		return sum;
	}
	
	public ConcurrentHashMap<Key, ArrayList<Cluster>> map=
			new ConcurrentHashMap<Key, ArrayList<Cluster>>(2000, 0.6f, 32);
	public ArrayList<Bin> residual=new ArrayList<Bin>();//Should really be contigs
	public ArrayList<Contig> contigList;
	private int minGridGC=999999;
	private int maxGridGC=0;
	private int minGridDepth=999999;
	private int maxGridDepth=0;
	
//	public AtomicLong fastComparisons=new AtomicLong(0);
//	public AtomicLong slowComparisons=new AtomicLong(0);
	
}