1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
package bin;
import java.util.ArrayList;
import fileIO.ByteStreamWriter;
import ml.CellNet;
import shared.Tools;
import structures.ByteBuilder;
import structures.FloatList;
import tax.TaxTree;
public class Oracle implements Cloneable {
public Oracle(float maxGCDif_, float maxDepthRatio_, float max3merDif_, float maxKmerDif_, float max5merDif_,
float maxProduct_, float maxCovariance_, float minKmerProb_, int minEdgeWeight_) {
maxGCDif0=maxGCDif_;
maxDepthRatio0=maxDepthRatio_;
maxTrimerDif0=max3merDif_;
maxKmerDif0=maxKmerDif_;
max5merDif0=max5merDif_;
maxProduct0=maxProduct_;
maxCovariance0=maxCovariance_;
minEdgeWeight=minEdgeWeight_;
stringency0=1;
minKmerProb0=minKmerProb_;
if(BinObject.net0small!=null) {networkSmall=BinObject.net0small.copy(false);}
if(BinObject.net0mid!=null) {networkMid=BinObject.net0mid.copy(false);}
if(BinObject.net0large!=null) {networkLarge=BinObject.net0large.copy(false);}
}
public Oracle(float stringency, int minEdgeWeight_) {
maxTrimerDif0=Binner.maxTrimerDif2*stringency;
maxKmerDif0=Binner.maxKmerDif2*stringency;
max5merDif0=Binner.max5merDif2*stringency;
maxDepthRatio0=1+((Binner.maxDepthRatio2-1)*stringency);
maxGCDif0=Binner.maxGCDif2*stringency;
maxProduct0=maxKmerDif0*maxDepthRatio0*Binner.productMult;
maxCovariance0=Binner.maxCovariance2*stringency;
minKmerProb0=Binner.minKmerProb2;
minEdgeWeight=minEdgeWeight_;
stringency0=stringency;
if(BinObject.net0small!=null) {networkSmall=BinObject.net0small.copy(false);}
if(BinObject.net0mid!=null) {networkMid=BinObject.net0mid.copy(false);}
if(BinObject.net0large!=null) {networkLarge=BinObject.net0large.copy(false);}
}
void clear() {
best=null;
bestIdx=-1;
score=topScore=-1;
}
/** Higher is more similar */
static final float similarity(float ratio_, float gcDif_,
float simDif_, float covariance_, float kmerProb_, long edges_) {
final float ratio=ratio_;
final float gcDif=gcDif_+1f;
final float simDif=simDif_*0.5f+1f;
final float covariance=1+covariance_*32;
float product=simDif*ratio*gcDif*covariance/kmerProb_;
if(BinObject.verbose) {
System.err.println(product+"="+simDif+"*"+ratio+"*"+gcDif+"*"+covariance+"/"+kmerProb_);
}
return 1f/product;
}
public final float similarity(Bin a, Bin b, float stringency0) {
long size=Tools.min(a.size(), b.size());
float sizeMult=Binner.sizeAdjustMult(size);
float stringency=stringency0*sizeMult;
if(a.maxDepth()==0 || b.maxDepth()==0) {
stringency*=0.8f;//Has no effect...? Maybe it will on coassemblies though.
}
float maxTrimerDif=maxTrimerDif0*stringency;
float maxKmerDif=maxKmerDif0*stringency;
float max5merDif=max5merDif0*stringency;
float maxDepthRatio=1+((maxDepthRatio0-1)*stringency);
float maxGCDif=maxGCDif0*stringency;
float maxProduct=maxKmerDif*maxDepthRatio*Binner.productMult;
maxProduct=Math.max(maxProduct, maxProduct0*sizeMult);
float maxCovariance=maxCovariance0*stringency;
float minProb=1-stringency0*(1-minKmerProb0);
score=similarity(a, b, maxGCDif, maxDepthRatio, maxTrimerDif, maxKmerDif, max5merDif,
maxProduct, maxCovariance, minProb);
return score;
}
public static float edgeMult(long e1, long e2, long eT, float d1, float d2) {
long minEdges=Tools.min(e1, e2);
if(minEdges<Binner.minEdgeWeight) {return eT<Binner.minEdgeWeight ? 1f : Binner.goodTransEdgeMult;}
long maxEdges=Tools.max(e1, e2);
float depth=0.5f*(d1+d2);
if(minEdges>Binner.lowDepthEdgeRatio*depth && maxEdges<Binner.highDepthEdgeRatio*depth) {
return Binner.goodEdgeMult;
}
return eT<Binner.minEdgeWeight ? 1f : Binner.goodTransEdgeMult;
}
/** Higher is more similar */
private final float similarity(Bin a, Bin b, float maxGCDif, float maxDepthRatio, float maxTrimerDif,
float maxKmerDif, float max5merDif, float maxProduct, float maxCovariance, float minKmerProb) {
// if(bsw!=null) {return similarityB(a, b, maxGCDif, maxDepthRatio, maxKmerDif, maxProduct, maxCovariance);}
fastComparisons++;
if(BinObject.verbose || verbose2) {
System.err.println("Comparing to "+b.id()+": "+
"maxKmerDif="+maxKmerDif+", maxDepthRatio="+maxDepthRatio+
", maxProduct="+maxProduct+", maxGCDif="+maxGCDif+
", maxCovariance="+maxCovariance);
}
final boolean sameLabel=(a.labelTaxid>0 && a.labelTaxid==b.labelTaxid);
// final boolean diffLabel=(a.labelTaxid<1 || a.labelTaxid!=b.labelTaxid);
if(Binner.PERFECT_ORACLE) {return sameLabel ? 1-1f/b.size() : -1;}
final float gcDif=Math.abs(a.gc()-b.gc());
final float depthRatio=a.depthRatio(b);
final long minlen=Math.min(a.size(), b.size());
if(BinObject.verbose || verbose2) {
System.err.println("gcdif="+gcDif);
System.err.println("depthRatio="+depthRatio);
}
if(gcDif>maxGCDif*Binner.goodEdgeMult ||
depthRatio>maxDepthRatio*Binner.goodEdgeMult) {
return -1;
}//Early exit before edge-tracking
final long edges1=useEdges ? a.countEdgesTo(b) : 0;
final long edges2=useEdges ? b.countEdgesTo(a) : 0;
final long minEdges=Tools.min(edges1, edges2);
if(BinObject.verbose || verbose2) {
System.err.println("A: size="+minlen+", e1="+edges1+", e2="+edges2+", minWeight="+minEdgeWeight);
}
final long edgesT=(minEdges>=Binner.minEdgeWeight ? minEdges : a.transEdgesTo(b));
// if(minEdges<1 && minlen<3000) {
// return -1;
// }//Doesn't help or even do much at minlen=3000
float mult=edgeMult(edges1, edges2, edgesT, a.depthTotal(), b.depthTotal());
// mult*=Math.sqrt(Binner.sizeAdjustMult(minlen));
// if(minlen<3000) {mult*=0.0f;return -1;}
if(BinObject.verbose || verbose2) {System.err.println("B: mult="+mult+", gcdif="+gcDif+", max="+(maxGCDif*mult));}
if(gcDif>maxGCDif*mult*Binner.cutoffMultD) {return -1;}
float covariance=a.covariance(b);
if(BinObject.verbose || verbose2) {
System.err.println("C: depthRatio="+depthRatio+", max="+(maxDepthRatio*mult)+
", covariance="+covariance+", max="+(maxCovariance*mult));
}
if(gcDif>maxGCDif*mult*Binner.cutoffMultD || depthRatio>maxDepthRatio*mult*Binner.cutoffMultD ||
covariance>maxCovariance*mult*Binner.cutoffMultD) {return -1;}
if(!taxaOK(a.taxid(), b.taxid())) {return -1;}
slowComparisons++;
float tetramerDif=SimilarityMeasures.cosineDifference(a.tetramers, b.tetramers);
float trimerDif=(SpectraCounter.countTrimers ?
SimilarityMeasures.cosineDifference(a.trimers, b.trimers) : 0);
float pentamerDif=(a.numPentamers<BinObject.minPentamerSizeCompare ||
b.numPentamers<BinObject.minPentamerSizeCompare ? 0 :
SimilarityMeasures.cosineDifference(a.pentamers, b.pentamers));
// SimilarityMeasures.euclideanDistance(a.pentamers, b.pentamers));
final float product=tetramerDif*depthRatio;
float kmerProb=KmerProb.prob(minlen, tetramerDif);
kmerProb=1-(1-kmerProb)/mult;
if(BinObject.verbose || verbose2) {
System.err.println("D: kmerDif="+tetramerDif+", max="+(maxKmerDif*mult)+
", product="+product+", max="+(maxProduct*mult));
}
if(tetramerDif>maxKmerDif*mult*Binner.cutoffMultA || trimerDif>maxTrimerDif*mult*Binner.cutoffMultA ||
pentamerDif>max5merDif*mult*Binner.cutoffMultA || product>maxProduct*mult*Binner.cutoffMultB ||
kmerProb<0.5f) {
return -1;
}
final float similarity=similarity(depthRatio, gcDif, tetramerDif, covariance, kmerProb, Tools.min(edges1, edges2));
final float netOutput=runNetwork(a, b, minEdges, edgesT, gcDif, depthRatio, covariance, tetramerDif, trimerDif, similarity, false);
if(BinObject.verbose || verbose2) {
System.err.println("E: similarity="+similarity+", netOutput="+netOutput);
}
CellNet network=getNetwork(minlen);
float mult2=mult;
if(network!=null) {
netComparisons++;
// if(netOutput<network.cutoff) {
//// return -1;
// mult*=Binner.netMultLower;
// }else
if(netOutput>Binner.netCutoffUpper) {
mult2*=Binner.netMultUpper;
// return netOutput;
}else if(netOutput<Binner.netCutoffLower) {
mult2*=Binner.netMultLower;
}
float ratio=netOutput/network.cutoff;
// kmerDif=kmerDif*network.cutoff/netOutput;
mult2=(float)(mult2*ratio*ratio);
}
if(BinObject.verbose || verbose2) {
System.err.println("F: mult="+mult+", kmerDif="+tetramerDif+", max="+(maxKmerDif*mult)+
", product="+product+", max="+(maxProduct*mult)+
"\n kmerProb="+kmerProb+", min="+(minKmerProb));
}
float ret=netOutput;
if(trimerDif>maxTrimerDif*mult2 || tetramerDif>maxKmerDif*mult2 || pentamerDif>max5merDif*mult2 ||
product>maxProduct*mult2 || kmerProb<minKmerProb) {ret=-1;}
float mult3=(network==null ? mult : mult2*Binner.cutoffMultC);
if(gcDif>maxGCDif*mult3 || depthRatio>maxDepthRatio*mult3 || covariance>maxCovariance*mult3) {ret=-1;}
if(bsw!=null && canEmitVector(a, b, ret)) {
if(sameLabel || Math.random()<=negativeEmitProb) {
emitVector(a, b, bsw);
}
}
if(Binner.BAN_BAD_MERGES && !sameLabel) {ret=-1;}
return ret;
}
final float runNetwork(Bin a, Bin b, final long minEdges, final long transEdges, final float gcDif,
final float depthRatio, final float covariance, final float kmerDif, final float trimerDif,
final float similarity, boolean includeAnswer) {
CellNet network=getNetwork(Math.min(a.size(), b.size()));
if(network==null) {return similarity;}
if(vector==null) {vector=new FloatList();}
toVector(a, b, minEdges, transEdges, gcDif, depthRatio,
covariance, kmerDif, trimerDif, similarity, vector, false);
network.applyInput(vector);
float result=network.feedForward();
return result;
}
static String header() {
ByteBuilder bb=new ByteBuilder();
// bb.append('#').append("aSize").tab().append("bSize");//0 1
// bb.tab().append("aGC").tab().append("bGC");//2 3
// bb.tab().append("gcDif");//4
// bb.tab().append("depthRatio").tab().append("covariance");//5 6
// bb.tab().append("aDepth").tab().append("bDepth");//7 8
// bb.tab().append("numDepth").tab().append("kmerDif");//9 10
// bb.tab().append("aEntrop").tab().append("bEntrop");//11 12
// bb.tab().append("entDif");//13
// bb.tab().append("aSpec").tab().append("bSpec");//14 15
// bb.tab().append("specDif");//16
// bb.tab().append("aContigs").tab().append("bContigs");//17 18
// bb.tab().append("aEdgeW").tab().append("bEdgeW");//19 20
// bb.tab().append("aEdges").tab().append("bEdges");//21 22
// bb.tab().append("similarity");//23
// bb.tab().append("sameTax");//24
bb.append('#').append("aSize");//0
bb.tab().append("bGC");//1
bb.tab().append("gcDif");//2
bb.tab().append("depthRatio").tab().append("covariance");//3 4
bb.tab().append("bDepth");//5
bb.tab().append("numDepth").tab().append("kmerDif");//6 7
bb.tab().append("bEntrop");//8
bb.tab().append("entDif");//9
bb.tab().append("bSpec");//10
bb.tab().append("specDif");//11
bb.tab().append("minEdge");//12
bb.tab().append("similarity");//13
bb.tab().append("sameTax");//14
return bb.toString();
}
FloatList toVector(Bin a, Bin b, FloatList list, boolean includeAnswer) {
if(a.size()>b.size()) {return toVector(b, a, list, includeAnswer);}
if(list==null) {list=new FloatList();}
list.clear();
long edges1=a.countEdgesTo(b);
long edges2=b.countEdgesTo(a);
long minEdges=Tools.min(edges1, edges2);
final long edgesT=(minEdges>=Binner.minEdgeWeight ? minEdges : a.transEdgesTo(b));
float gcDif=Math.abs(a.gc()-b.gc());
float depthRatio=a.depthRatio(b);
float covariance=a.covariance(b);
float kmerDif=SimilarityMeasures.calculateDifferenceAverage(a.tetramers, b.tetramers);
float trimerDif=(SpectraCounter.countTrimers ?
SimilarityMeasures.calculateDifferenceAverage(a.trimers, b.trimers) : 0f);
long minlen=Math.min(a.size(), b.size());
final float kmerProb=KmerProb.prob(minlen, kmerDif);
float similarity=similarity(depthRatio, gcDif, kmerDif, covariance, kmerProb, Tools.min(edges1, edges2));
return toVector(a, b, minEdges, edgesT, gcDif, depthRatio, covariance, kmerDif, trimerDif, similarity, list, includeAnswer);
}
FloatList toVector(Bin a, Bin b, final long minEdges, final long transEdges, final float gcDif, final float depthRatio,
final float covariance, final float kmerDif, final float trimerDif, final float similarity,
FloatList list, boolean includeAnswer) {
if(a.size()>b.size()) {
return toVector(b, a, minEdges, transEdges, gcDif, depthRatio, covariance, kmerDif, trimerDif, similarity, list, includeAnswer);
}
if(list==null) {list=new FloatList();}
list.clear();
float depth=0.5f*(a.depthTotal()+b.depthTotal()+0.5f);
long minlen=Math.min(a.size(), b.size());
// final float kmerProb=KmerProb.prob(minlen, kmerDif);
// list.add(a.size());//-1
if(printSizeInVector) {
list.add(a.size());
list.add(a.numContigs());
list.add(b.size());
list.add(b.numContigs());
}
list.add(0.1f*(float)Tools.log2(Tools.max(1, a.size()-64)));//0
// list.add(0.1f*(float)Tools.log2(b.size()));
// list.add(a.gc());
list.add(b.gc());//1
list.add(gcDif);//2
list.add(kmerDif<0 || !Float.isFinite(kmerDif) ? 0 : kmerDif);//3
list.add(trimerDif<0 || !Float.isFinite(trimerDif) ? 0 : trimerDif);//4
list.add((float)(minEdges/depth));//5
list.add((float)(transEdges/depth));//6
list.add((float)(0.5f*Tools.log2(depthRatio)));//7
list.add(covariance<0 || !Float.isFinite(covariance) ? 0 : (float)Math.sqrt(covariance));//8
// list.add((float)(0.1f*Tools.log2(1+a.depthTotal())));
list.add((float)(0.1f*Tools.log2(1+b.depthTotal())));//9
list.add(a.numDepths()>1 ? 1 : 0);//10
list.add(a.numDepths()>2 ? 1 : 0);//11
list.add(a.numDepths()>3 ? 1 : 0);//12
list.add(a.numDepths()>4 ? (0.2f*(a.numDepths()-4)) : 0);//13
// list.add(a.entropy);
list.add(8*(1-b.entropy));//14
list.add(8*Tools.absdif(a.entropy, b.entropy));//15
// list.add(a.strandedness-1);
list.add(b.strandedness);//16
list.add(8*Tools.absdif(a.strandedness, b.strandedness));//17
// list.add((float)(0.5f*Tools.log2(a.numContigs())));
// list.add((float)(0.5f*Tools.log2(b.numContigs())));
// list.add(edges1/depth);
// list.add(edges2/depth);
// list.add(0.1f*a.numEdges()/(float)(Tools.max(b.numContigs(), 1)));
// list.add(0.1f*b.numEdges()/(float)(Tools.max(b.numContigs(), 1)));
list.add(1-similarity);//18
if(includeAnswer) {
assert(a.labelTaxid>0 && b.labelTaxid>0) : a.labelTaxid+", "+b.labelTaxid+", "+a.name();
list.add(a.labelTaxid==b.labelTaxid ? 1 : 0);
}
list.shrink();
for(float f : list.array) {
assert(Float.isFinite(f)) : list;
}
return list;
}
private boolean taxaOK(int aTaxid, int bTaxid) {
if(!allowHalfTaxID && (aTaxid<1 || bTaxid<1)) {return false;}
if(!allowNoTaxID && aTaxid<1 && bTaxid<1) {return false;}
if(taxlevel<0 || BinObject.tree==null || aTaxid==bTaxid || aTaxid<1 || bTaxid<1) {return true;}
int commonAncestorLevel=BinObject.tree.commonAncestorLevel(aTaxid, bTaxid);
return (commonAncestorLevel<=taxlevel);
}
protected Oracle clone() {
try {
Oracle clone=(Oracle) super.clone();
clone.best=null;
clone.vector=null;
clone.networkSmall=(networkSmall==null ? null : networkSmall.copy(false));
clone.networkMid=(networkMid==null ? null : networkMid.copy(false));
clone.networkLarge=(networkLarge==null ? null : networkLarge.copy(false));
return clone;
} catch (CloneNotSupportedException e) {
throw new RuntimeException(e);
}
}
static boolean canEmitVector(Bin a, Bin b, float result) {
long minSize=Math.min(a.size(), b.size());
if(a.labelTaxid<1 || b.labelTaxid<1) {return false;}
if(minSize<minEmitSize || minSize>maxEmitSize) {return false;}
if(!a.pure() || !b.pure()) {return false;}
boolean sameTID=(a.labelTaxid==b.labelTaxid);
boolean merge=(result>0);
final boolean ret;
if(merge) {ret=(sameTID ? emitTP : emitFP);}
else{ret=(sameTID ? emitFN : emitFP);}
// assert(!ret) : result+", "+merge+", "+sameTID+", "+minSize;
return ret;
}
void emitVector(Bin a, Bin b, ByteStreamWriter bsw) {
assert(bsw!=null);
long minlen=Tools.min(a.size(), b.size());
float prob=(minlen/4000f)*(minlen/2000f);
if(Math.random()>prob) {return;}
if(vector==null) {vector=new FloatList();}
toVector(a, b, vector, true);
emitVector(vector, bsw);
}
static void emitVector(FloatList vector, ByteStreamWriter bsw) {
assert(bsw!=null);
ByteBuilder bb=new ByteBuilder();
for(int i=0; i<vector.size(); i++) {
if(i>0) {bb.tab();}
bb.append(vector.get(i), 7, true);
}
synchronized(bsw) {
bsw.print(bb.nl());
}
}
private CellNet getNetwork(long size) {
if(size<Binner.minNetSize) {return null;}
if(size<Binner.midNetSize) {return networkSmall;}
if(size<Binner.largeNetSize) {return networkMid;}
return networkLarge;
}
Bin best=null;
float score=-1;
float topScore=-1;
int bestIdx=-1;
long fastComparisons=0;
long slowComparisons=0;
long netComparisons=0;
final float maxTrimerDif0;
final float maxKmerDif0;
final float max5merDif0;
final float maxDepthRatio0;
final float maxGCDif0;
final float maxProduct0;
final float maxCovariance0;
final float minKmerProb0;
final int minEdgeWeight;
final float stringency0;
private FloatList vector;
private CellNet networkSmall;
private CellNet networkMid;
private CellNet networkLarge;
int taxlevel=TaxTree.SPECIES;
boolean allowNoTaxID=true;
boolean allowHalfTaxID=true;
boolean useEdges=true;
static ByteStreamWriter bsw;
static boolean emitTP=true;
static boolean emitFP=true;
static boolean emitTN=true;
static boolean emitFN=true;
static int minEmitSize=0;
static int maxEmitSize=2000000000;
static double negativeEmitProb=1;
static boolean printSizeInVector=false;
boolean verbose2=false;
}
|