File: Oracle.java

package info (click to toggle)
bbmap 39.20%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 26,024 kB
  • sloc: java: 312,743; sh: 18,099; python: 5,247; ansic: 2,074; perl: 96; makefile: 39; xml: 38
file content (463 lines) | stat: -rwxr-xr-x 18,160 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
package bin;

import java.util.ArrayList;

import fileIO.ByteStreamWriter;
import ml.CellNet;
import shared.Tools;
import structures.ByteBuilder;
import structures.FloatList;
import tax.TaxTree;

public class Oracle implements Cloneable {

	public Oracle(float maxGCDif_, float maxDepthRatio_, float max3merDif_, float maxKmerDif_, float max5merDif_,
			float maxProduct_, float maxCovariance_, float minKmerProb_, int minEdgeWeight_) {
		maxGCDif0=maxGCDif_;
		maxDepthRatio0=maxDepthRatio_;
		maxTrimerDif0=max3merDif_;
		maxKmerDif0=maxKmerDif_;
		max5merDif0=max5merDif_;
		maxProduct0=maxProduct_;
		maxCovariance0=maxCovariance_;
		minEdgeWeight=minEdgeWeight_;
		stringency0=1;
		minKmerProb0=minKmerProb_;
		if(BinObject.net0small!=null) {networkSmall=BinObject.net0small.copy(false);}
		if(BinObject.net0mid!=null) {networkMid=BinObject.net0mid.copy(false);}
		if(BinObject.net0large!=null) {networkLarge=BinObject.net0large.copy(false);}
	}
	
	public Oracle(float stringency, int minEdgeWeight_) {
		maxTrimerDif0=Binner.maxTrimerDif2*stringency;
		maxKmerDif0=Binner.maxKmerDif2*stringency;
		max5merDif0=Binner.max5merDif2*stringency;
		maxDepthRatio0=1+((Binner.maxDepthRatio2-1)*stringency);
		maxGCDif0=Binner.maxGCDif2*stringency;
		maxProduct0=maxKmerDif0*maxDepthRatio0*Binner.productMult;
		maxCovariance0=Binner.maxCovariance2*stringency;
		minKmerProb0=Binner.minKmerProb2;
		minEdgeWeight=minEdgeWeight_;
		stringency0=stringency;
		if(BinObject.net0small!=null) {networkSmall=BinObject.net0small.copy(false);}
		if(BinObject.net0mid!=null) {networkMid=BinObject.net0mid.copy(false);}
		if(BinObject.net0large!=null) {networkLarge=BinObject.net0large.copy(false);}
	}
	
	void clear() {
		best=null;
		bestIdx=-1;
		score=topScore=-1;
	}
	
	/** Higher is more similar */
	static final float similarity(float ratio_, float gcDif_, 
			float simDif_, float covariance_, float kmerProb_, long edges_) {
		final float ratio=ratio_;
		final float gcDif=gcDif_+1f;
		final float simDif=simDif_*0.5f+1f;
		final float covariance=1+covariance_*32;
		float product=simDif*ratio*gcDif*covariance/kmerProb_;
		if(BinObject.verbose) {
			System.err.println(product+"="+simDif+"*"+ratio+"*"+gcDif+"*"+covariance+"/"+kmerProb_);
		}
		return 1f/product;
	}
	
	public final float similarity(Bin a, Bin b, float stringency0) {
		long size=Tools.min(a.size(), b.size());
		float sizeMult=Binner.sizeAdjustMult(size);
		float stringency=stringency0*sizeMult;

		if(a.maxDepth()==0 || b.maxDepth()==0) {
			stringency*=0.8f;//Has no effect...?  Maybe it will on coassemblies though.
		}
		float maxTrimerDif=maxTrimerDif0*stringency;
		float maxKmerDif=maxKmerDif0*stringency;
		float max5merDif=max5merDif0*stringency;
		float maxDepthRatio=1+((maxDepthRatio0-1)*stringency);
		float maxGCDif=maxGCDif0*stringency;
		float maxProduct=maxKmerDif*maxDepthRatio*Binner.productMult;
		maxProduct=Math.max(maxProduct, maxProduct0*sizeMult);
		float maxCovariance=maxCovariance0*stringency;
		float minProb=1-stringency0*(1-minKmerProb0);
		score=similarity(a, b, maxGCDif, maxDepthRatio, maxTrimerDif, maxKmerDif, max5merDif,
				maxProduct, maxCovariance, minProb);
		return score;
	}
	
	public static float edgeMult(long e1, long e2, long eT, float d1, float d2) {
		long minEdges=Tools.min(e1, e2);
		if(minEdges<Binner.minEdgeWeight) {return eT<Binner.minEdgeWeight ? 1f : Binner.goodTransEdgeMult;}
		long maxEdges=Tools.max(e1, e2);
		float depth=0.5f*(d1+d2);
		if(minEdges>Binner.lowDepthEdgeRatio*depth && maxEdges<Binner.highDepthEdgeRatio*depth) {
			return Binner.goodEdgeMult;
		}
		return eT<Binner.minEdgeWeight ? 1f : Binner.goodTransEdgeMult;
	}
	
	/** Higher is more similar */
	private final float similarity(Bin a, Bin b, float maxGCDif, float maxDepthRatio, float maxTrimerDif, 
			float maxKmerDif, float max5merDif, float maxProduct, float maxCovariance, float minKmerProb) {
//		if(bsw!=null) {return similarityB(a, b, maxGCDif, maxDepthRatio, maxKmerDif, maxProduct, maxCovariance);}
		fastComparisons++;
		
		if(BinObject.verbose || verbose2) {
			System.err.println("Comparing to "+b.id()+": "+
					"maxKmerDif="+maxKmerDif+", maxDepthRatio="+maxDepthRatio+
					", maxProduct="+maxProduct+", maxGCDif="+maxGCDif+
					", maxCovariance="+maxCovariance);
		}
		final boolean sameLabel=(a.labelTaxid>0 && a.labelTaxid==b.labelTaxid);
//		final boolean diffLabel=(a.labelTaxid<1 || a.labelTaxid!=b.labelTaxid);
		if(Binner.PERFECT_ORACLE) {return sameLabel ? 1-1f/b.size() : -1;}
		
		final float gcDif=Math.abs(a.gc()-b.gc());
		final float depthRatio=a.depthRatio(b);
		final long minlen=Math.min(a.size(), b.size());
		if(BinObject.verbose || verbose2) {
			System.err.println("gcdif="+gcDif);
			System.err.println("depthRatio="+depthRatio);
		}
		if(gcDif>maxGCDif*Binner.goodEdgeMult || 
				depthRatio>maxDepthRatio*Binner.goodEdgeMult) {
			return -1;
		}//Early exit before edge-tracking
		
		final long edges1=useEdges ? a.countEdgesTo(b) : 0;
		final long edges2=useEdges ? b.countEdgesTo(a) : 0;
		final long minEdges=Tools.min(edges1, edges2);
		if(BinObject.verbose || verbose2) {
			System.err.println("A: size="+minlen+", e1="+edges1+", e2="+edges2+", minWeight="+minEdgeWeight);
		}
		final long edgesT=(minEdges>=Binner.minEdgeWeight ? minEdges : a.transEdgesTo(b));
//		if(minEdges<1 && minlen<3000) {
//			return -1;
//		}//Doesn't help or even do much at minlen=3000
		float mult=edgeMult(edges1, edges2, edgesT, a.depthTotal(), b.depthTotal());
//		mult*=Math.sqrt(Binner.sizeAdjustMult(minlen));
//		if(minlen<3000) {mult*=0.0f;return -1;}
		
		if(BinObject.verbose || verbose2) {System.err.println("B: mult="+mult+", gcdif="+gcDif+", max="+(maxGCDif*mult));}
		if(gcDif>maxGCDif*mult*Binner.cutoffMultD) {return -1;}
		float covariance=a.covariance(b);
		if(BinObject.verbose || verbose2) {
			System.err.println("C: depthRatio="+depthRatio+", max="+(maxDepthRatio*mult)+
					", covariance="+covariance+", max="+(maxCovariance*mult));
		}
		if(gcDif>maxGCDif*mult*Binner.cutoffMultD || depthRatio>maxDepthRatio*mult*Binner.cutoffMultD || 
				covariance>maxCovariance*mult*Binner.cutoffMultD) {return -1;}
		if(!taxaOK(a.taxid(), b.taxid())) {return -1;}
		
		slowComparisons++;
		float tetramerDif=SimilarityMeasures.cosineDifference(a.tetramers, b.tetramers);
		float trimerDif=(SpectraCounter.countTrimers ? 
				SimilarityMeasures.cosineDifference(a.trimers, b.trimers) : 0);
		float pentamerDif=(a.numPentamers<BinObject.minPentamerSizeCompare ||
				b.numPentamers<BinObject.minPentamerSizeCompare ? 0 :
					SimilarityMeasures.cosineDifference(a.pentamers, b.pentamers));
//					SimilarityMeasures.euclideanDistance(a.pentamers, b.pentamers));
		final float product=tetramerDif*depthRatio;
		float kmerProb=KmerProb.prob(minlen, tetramerDif);
		kmerProb=1-(1-kmerProb)/mult;
		if(BinObject.verbose || verbose2) {
			System.err.println("D: kmerDif="+tetramerDif+", max="+(maxKmerDif*mult)+
					", product="+product+", max="+(maxProduct*mult));
		}
		
		if(tetramerDif>maxKmerDif*mult*Binner.cutoffMultA || trimerDif>maxTrimerDif*mult*Binner.cutoffMultA || 
				pentamerDif>max5merDif*mult*Binner.cutoffMultA || product>maxProduct*mult*Binner.cutoffMultB || 
				kmerProb<0.5f) {
			return -1;
		}
		
		final float similarity=similarity(depthRatio, gcDif, tetramerDif, covariance, kmerProb, Tools.min(edges1, edges2));
		final float netOutput=runNetwork(a, b, minEdges, edgesT, gcDif, depthRatio, covariance, tetramerDif, trimerDif, similarity, false);
		
		if(BinObject.verbose || verbose2) {
			System.err.println("E: similarity="+similarity+", netOutput="+netOutput);
		}
		
		CellNet network=getNetwork(minlen);
		float mult2=mult;
		if(network!=null) {
			netComparisons++;
//			if(netOutput<network.cutoff) {
////				return -1;
//				mult*=Binner.netMultLower;
//			}else 
			if(netOutput>Binner.netCutoffUpper) {
				mult2*=Binner.netMultUpper;
//				return netOutput;
			}else if(netOutput<Binner.netCutoffLower) {
				mult2*=Binner.netMultLower;
			}
			float ratio=netOutput/network.cutoff;
//			kmerDif=kmerDif*network.cutoff/netOutput;
			mult2=(float)(mult2*ratio*ratio);
		}
		if(BinObject.verbose || verbose2) {
			System.err.println("F: mult="+mult+", kmerDif="+tetramerDif+", max="+(maxKmerDif*mult)+
					", product="+product+", max="+(maxProduct*mult)+
					"\n   kmerProb="+kmerProb+", min="+(minKmerProb));
		}
		
		float ret=netOutput;
		if(trimerDif>maxTrimerDif*mult2 || tetramerDif>maxKmerDif*mult2 || pentamerDif>max5merDif*mult2 || 
				product>maxProduct*mult2 || kmerProb<minKmerProb) {ret=-1;}

		float mult3=(network==null ? mult : mult2*Binner.cutoffMultC);
		if(gcDif>maxGCDif*mult3 || depthRatio>maxDepthRatio*mult3 || covariance>maxCovariance*mult3) {ret=-1;}
		
		if(bsw!=null && canEmitVector(a, b, ret)) {
			if(sameLabel || Math.random()<=negativeEmitProb) {
				emitVector(a, b, bsw);
			}
		}
		
		if(Binner.BAN_BAD_MERGES && !sameLabel) {ret=-1;}
		return ret;
	}
	
	final float runNetwork(Bin a, Bin b, final long minEdges, final long transEdges, final float gcDif, 
			final float depthRatio, final float covariance, final float kmerDif, final float trimerDif,
			final float similarity, boolean includeAnswer) {
		CellNet network=getNetwork(Math.min(a.size(), b.size()));
		if(network==null) {return similarity;}
		if(vector==null) {vector=new FloatList();}
		toVector(a, b, minEdges, transEdges, gcDif, depthRatio,
				covariance, kmerDif, trimerDif, similarity, vector, false);
		network.applyInput(vector);
		float result=network.feedForward();
		return result;
	}
	
	static String header() {
		ByteBuilder bb=new ByteBuilder();
//		bb.append('#').append("aSize").tab().append("bSize");//0 1
//		bb.tab().append("aGC").tab().append("bGC");//2 3
//		bb.tab().append("gcDif");//4
//		bb.tab().append("depthRatio").tab().append("covariance");//5 6
//		bb.tab().append("aDepth").tab().append("bDepth");//7 8
//		bb.tab().append("numDepth").tab().append("kmerDif");//9 10
//		bb.tab().append("aEntrop").tab().append("bEntrop");//11 12
//		bb.tab().append("entDif");//13
//		bb.tab().append("aSpec").tab().append("bSpec");//14 15
//		bb.tab().append("specDif");//16
//		bb.tab().append("aContigs").tab().append("bContigs");//17 18
//		bb.tab().append("aEdgeW").tab().append("bEdgeW");//19 20
//		bb.tab().append("aEdges").tab().append("bEdges");//21 22
//		bb.tab().append("similarity");//23
//		bb.tab().append("sameTax");//24
		

		bb.append('#').append("aSize");//0
		bb.tab().append("bGC");//1
		bb.tab().append("gcDif");//2
		bb.tab().append("depthRatio").tab().append("covariance");//3 4
		bb.tab().append("bDepth");//5
		bb.tab().append("numDepth").tab().append("kmerDif");//6 7
		bb.tab().append("bEntrop");//8
		bb.tab().append("entDif");//9
		bb.tab().append("bSpec");//10
		bb.tab().append("specDif");//11
		bb.tab().append("minEdge");//12
		bb.tab().append("similarity");//13
		bb.tab().append("sameTax");//14
		
		return bb.toString();
	}
	
	FloatList toVector(Bin a, Bin b, FloatList list, boolean includeAnswer) {
		if(a.size()>b.size()) {return toVector(b, a, list, includeAnswer);}
		if(list==null) {list=new FloatList();}
		list.clear();
		long edges1=a.countEdgesTo(b);
		long edges2=b.countEdgesTo(a);
		long minEdges=Tools.min(edges1, edges2);
		final long edgesT=(minEdges>=Binner.minEdgeWeight ? minEdges : a.transEdgesTo(b));
		float gcDif=Math.abs(a.gc()-b.gc());
		float depthRatio=a.depthRatio(b);
		float covariance=a.covariance(b);
		float kmerDif=SimilarityMeasures.calculateDifferenceAverage(a.tetramers, b.tetramers);
		float trimerDif=(SpectraCounter.countTrimers ? 
				SimilarityMeasures.calculateDifferenceAverage(a.trimers, b.trimers) : 0f);
		
		long minlen=Math.min(a.size(), b.size());
		final float kmerProb=KmerProb.prob(minlen, kmerDif);
		float similarity=similarity(depthRatio, gcDif, kmerDif, covariance, kmerProb, Tools.min(edges1, edges2));
		
		return toVector(a, b, minEdges, edgesT, gcDif, depthRatio, covariance, kmerDif, trimerDif, similarity, list, includeAnswer);
	}
	
	FloatList toVector(Bin a, Bin b, final long minEdges, final long transEdges, final float gcDif, final float depthRatio,
			final float covariance, final float kmerDif, final float trimerDif, final float similarity,
			FloatList list, boolean includeAnswer) {
		if(a.size()>b.size()) {
			return toVector(b, a, minEdges, transEdges, gcDif, depthRatio, covariance, kmerDif, trimerDif, similarity, list, includeAnswer);
		}
		if(list==null) {list=new FloatList();}
		list.clear();
		float depth=0.5f*(a.depthTotal()+b.depthTotal()+0.5f);
		
		long minlen=Math.min(a.size(), b.size());
//		final float kmerProb=KmerProb.prob(minlen, kmerDif);
		
//		list.add(a.size());//-1
		if(printSizeInVector) {
			list.add(a.size());
			list.add(a.numContigs());
			list.add(b.size());
			list.add(b.numContigs());
		}
		list.add(0.1f*(float)Tools.log2(Tools.max(1, a.size()-64)));//0
//		list.add(0.1f*(float)Tools.log2(b.size()));
//		list.add(a.gc());
		list.add(b.gc());//1
		list.add(gcDif);//2
		list.add(kmerDif<0 || !Float.isFinite(kmerDif) ? 0 : kmerDif);//3
		list.add(trimerDif<0 || !Float.isFinite(trimerDif) ? 0 : trimerDif);//4
		list.add((float)(minEdges/depth));//5
		list.add((float)(transEdges/depth));//6
		list.add((float)(0.5f*Tools.log2(depthRatio)));//7
		list.add(covariance<0 || !Float.isFinite(covariance) ? 0 : (float)Math.sqrt(covariance));//8
//		list.add((float)(0.1f*Tools.log2(1+a.depthTotal())));
		list.add((float)(0.1f*Tools.log2(1+b.depthTotal())));//9
		list.add(a.numDepths()>1 ? 1 : 0);//10
		list.add(a.numDepths()>2 ? 1 : 0);//11
		list.add(a.numDepths()>3 ? 1 : 0);//12
		list.add(a.numDepths()>4 ? (0.2f*(a.numDepths()-4)) : 0);//13
//		list.add(a.entropy);
		list.add(8*(1-b.entropy));//14
		list.add(8*Tools.absdif(a.entropy, b.entropy));//15
//		list.add(a.strandedness-1);
		list.add(b.strandedness);//16
		list.add(8*Tools.absdif(a.strandedness, b.strandedness));//17
//		list.add((float)(0.5f*Tools.log2(a.numContigs())));
//		list.add((float)(0.5f*Tools.log2(b.numContigs())));
//		list.add(edges1/depth);
//		list.add(edges2/depth);
//		list.add(0.1f*a.numEdges()/(float)(Tools.max(b.numContigs(), 1)));
//		list.add(0.1f*b.numEdges()/(float)(Tools.max(b.numContigs(), 1)));
		list.add(1-similarity);//18
		if(includeAnswer) {
			assert(a.labelTaxid>0 && b.labelTaxid>0) : a.labelTaxid+", "+b.labelTaxid+", "+a.name();
			list.add(a.labelTaxid==b.labelTaxid ? 1 : 0);
		}
		list.shrink();
		for(float f : list.array) {
			assert(Float.isFinite(f)) : list;
		}
		return list;
	}
	
	private boolean taxaOK(int aTaxid, int bTaxid) {
		if(!allowHalfTaxID && (aTaxid<1 || bTaxid<1)) {return false;}
		if(!allowNoTaxID && aTaxid<1 && bTaxid<1) {return false;}
		if(taxlevel<0 || BinObject.tree==null || aTaxid==bTaxid || aTaxid<1 || bTaxid<1) {return true;}
		int commonAncestorLevel=BinObject.tree.commonAncestorLevel(aTaxid, bTaxid);
		return (commonAncestorLevel<=taxlevel);
	}
	
	
	protected Oracle clone() {
		try {
			Oracle clone=(Oracle) super.clone();
			clone.best=null;
			clone.vector=null;
			clone.networkSmall=(networkSmall==null ? null : networkSmall.copy(false));
			clone.networkMid=(networkMid==null ? null : networkMid.copy(false));
			clone.networkLarge=(networkLarge==null ? null : networkLarge.copy(false));
			return clone;
		} catch (CloneNotSupportedException e) {
			throw new RuntimeException(e);
		}
	}
	
	static boolean canEmitVector(Bin a, Bin b, float result) {
		long minSize=Math.min(a.size(), b.size());
		if(a.labelTaxid<1 || b.labelTaxid<1) {return false;}
		if(minSize<minEmitSize || minSize>maxEmitSize) {return false;}
		if(!a.pure() || !b.pure()) {return false;}
		boolean sameTID=(a.labelTaxid==b.labelTaxid);
		boolean merge=(result>0);
		final boolean ret;
		if(merge) {ret=(sameTID ? emitTP : emitFP);}
		else{ret=(sameTID ? emitFN : emitFP);}
//		assert(!ret) : result+", "+merge+", "+sameTID+", "+minSize;
		return ret;
	}
	
	void emitVector(Bin a, Bin b, ByteStreamWriter bsw) {
		assert(bsw!=null);
		long minlen=Tools.min(a.size(), b.size());
		float prob=(minlen/4000f)*(minlen/2000f);
		if(Math.random()>prob) {return;}
		if(vector==null) {vector=new FloatList();}
		toVector(a, b, vector, true);
		emitVector(vector, bsw);
	}
	
	static void emitVector(FloatList vector, ByteStreamWriter bsw) {
		assert(bsw!=null);
		ByteBuilder bb=new ByteBuilder();
		for(int i=0; i<vector.size(); i++) {
			if(i>0) {bb.tab();}
			bb.append(vector.get(i), 7, true);
		}
		synchronized(bsw) {
			bsw.print(bb.nl());
		}
	}
	
	private CellNet getNetwork(long size) {
		if(size<Binner.minNetSize) {return null;}
		if(size<Binner.midNetSize) {return networkSmall;}
		if(size<Binner.largeNetSize) {return networkMid;}
		return networkLarge;
	}
	
	Bin best=null;
	float score=-1;
	float topScore=-1;
	int bestIdx=-1;
	
	long fastComparisons=0;
	long slowComparisons=0;
	long netComparisons=0;

	final float maxTrimerDif0;
	final float maxKmerDif0;
	final float max5merDif0;
	final float maxDepthRatio0;
	final float maxGCDif0;
	final float maxProduct0;
	final float maxCovariance0;
	final float minKmerProb0;
	final int minEdgeWeight;
	
	final float stringency0;
	private FloatList vector;
	private CellNet networkSmall;
	private CellNet networkMid;
	private CellNet networkLarge;
	
	int taxlevel=TaxTree.SPECIES;
	boolean allowNoTaxID=true;
	boolean allowHalfTaxID=true;
	boolean useEdges=true;
	
	static ByteStreamWriter bsw;
	static boolean emitTP=true;
	static boolean emitFP=true;
	static boolean emitTN=true;
	static boolean emitFN=true;
	static int minEmitSize=0;
	static int maxEmitSize=2000000000;
	static double negativeEmitProb=1;
	static boolean printSizeInVector=false;
	boolean verbose2=false;
	
	
}