1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
package cardinality;
import shared.Parser;
import shared.Tools;
import structures.LongList;
/**
* @author Brian Bushnell
* @date Mar 6, 2020
*
*/
public final class LogLog16 extends CardinalityTracker {
/*--------------------------------------------------------------*/
/*---------------- Initialization ----------------*/
/*--------------------------------------------------------------*/
/** Create a LogLog with default parameters */
LogLog16(){
this(2048, 31, -1, 0);
}
/** Create a LogLog with parsed parameters */
LogLog16(Parser p){
super(p);
maxArray=new char[buckets];
}
/**
* Create a LogLog with specified parameters
* @param buckets_ Number of buckets (counters)
* @param k_ Kmer length
* @param seed Random number generator seed; -1 for a random seed
* @param minProb_ Ignore kmers with under this probability of being correct
*/
LogLog16(int buckets_, int k_, long seed, float minProb_){
super(buckets_, k_, seed, minProb_);
maxArray=new char[buckets];
}
/*--------------------------------------------------------------*/
/*---------------- Methods ----------------*/
/*--------------------------------------------------------------*/
//Restores floating point to integer
private long restore(int score){
long lowbits=(~score)&mask;
int leading=(int)(score>>>mantissabits);
long mantissa=(1L<<mantissabits)|lowbits;
int shift=wordlen-leading-mantissabits-1;
long original=mantissa<<shift;
return original;
}
@Override
public final long cardinality(){
double difSum=0;
double hSum=0;
double gSum=0;
double rSum=0;
double estLogSum=0;
int count=0;
LongList list=new LongList(buckets);
for(int i=0; i<maxArray.length; i++){
int max=maxArray[i];
long val=restore(max);
if(max>0 && val>0){
long dif=val;
difSum+=dif;
hSum+=1.0/Tools.max(1, dif);
gSum+=Math.log(Tools.max(1, dif));
rSum+=Math.sqrt(dif);
count++;
double est=2*(Long.MAX_VALUE/(double)dif)*SKIPMOD;
estLogSum+=Math.log(est);
list.add(dif);
}
}
final int div=Tools.max(count, 1);//Could be count or buckets but one causes problems
final double mean=difSum/div;
double hmean=hSum/div;
double gmean=gSum/div;
double rmean=rSum/div;
hmean=1.0/hmean;
gmean=Math.exp(gmean);
rmean=rmean*rmean;
list.sort();
final long median=list.median();
final double mwa=list.medianWeightedAverage();
//What to use as the value from the counters
final double proxy=(USE_MEAN ? mean : USE_MEDIAN ? median : USE_MWA ? mwa : USE_HMEAN ? hmean : USE_GMEAN ? gmean : mean);
final double estimatePerSet=2*(Long.MAX_VALUE/proxy)*SKIPMOD;
final double total=estimatePerSet*div*((count+buckets)/(float)(buckets+buckets));
final double estSum=div*Math.exp(estLogSum/(Tools.max(div, 1)));
double medianEst=2*(Long.MAX_VALUE/(double)median)*SKIPMOD*div;
// new Exception().printStackTrace();
// System.err.println(maxArray);
//// Overall, it looks like "total" is the best, then "estSum", then "medianEst" is the worst, in terms of variance.
// System.err.println("difSum="+difSum+", count="+count+", mean="+mean+", est="+estimatePerSet+", total="+(long)total);
// System.err.println("estSum="+(long)estSum+", median="+median+", medianEst="+(long)medianEst);
long cardinality=(long)(total);
lastCardinality=cardinality;
return cardinality;
}
@Override
public final void add(CardinalityTracker log){
assert(log.getClass()==this.getClass());
add((LogLog16)log);
}
public void add(LogLog16 log){
if(maxArray!=log.maxArray){
for(int i=0; i<buckets; i++){
maxArray[i]=Tools.max(maxArray[i], log.maxArray[i]);
}
}
}
@Override
public void hashAndStore(final long number){
// if(number%SKIPMOD!=0){return;} //Slows down moderately
long key=number;
// key=hash(key, tables[((int)number)&numTablesMask]);
key=Tools.hash64shift(key);
// if(key<0 || key>maxHashedValue){return;}//Slows things down by 50% lot, mysteriously
int leading=Long.numberOfLeadingZeros(key)&63;//mask is used to keep number in 6 bits
// counts[leading]++;
// if(leading<3){return;}//Speeds up by 20%, even more at 4. Slows at 2.
int shift=wordlen-leading-mantissabits-1;
int score=(leading<<mantissabits)+(int)((~(key>>>shift))&mask);
// assert(false) : "\n"+Long.toBinaryString(key)+", leading="+leading+", shift="+shift+"\n"+Long.toBinaryString(score);
//+"\n"+score+"\n"+restore(score);
// final int bucket=(int)((number&Integer.MAX_VALUE)%buckets);
final int bucket=(int)(key&bucketMask);
int newValue=Tools.max(score, maxArray[bucket]);
assert(newValue>=0 && newValue<=Character.MAX_VALUE) : newValue;
maxArray[bucket]=(char)newValue;
}
@Override
public final float[] compensationFactorLogBucketsArray(){
return null;
}
/*--------------------------------------------------------------*/
/*---------------- Fields ----------------*/
/*--------------------------------------------------------------*/
private final char[] maxArray;
/*--------------------------------------------------------------*/
/*---------------- Statics ----------------*/
/*--------------------------------------------------------------*/
public static void setMantissaBits(int x){
assert(x>=0 && x<25);
assert(x+6<32);
mantissabits=x;
mask=(1<<mantissabits)-1;
}
private static final int wordlen=64;
/** Precision or mantissa bits.
* This should not be changed. As long as it is >10 the result will be accurate.
* At low values like 2 the cardinality estimate becomes too high due to a loss of precision,
* and would need a fixed multiplier.
*/
private static int mantissabits=10;//10 is the max possible
private static int mask=(1<<mantissabits)-1;
}
|