File: ScannerThread.java

package info (click to toggle)
bbmap 39.20%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 26,024 kB
  • sloc: java: 312,743; sh: 18,099; python: 5,247; ansic: 2,074; perl: 96; makefile: 39; xml: 38
file content (658 lines) | stat: -rwxr-xr-x 22,155 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
package ml;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.PriorityQueue;
import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.locks.ReentrantReadWriteLock;

import shared.Shared;
import shared.Tools;

/** 
 * The goal of this thread is to generate lots of networks,
 * evaluate them, and return the best candidates.
 * @author BBushnell
 *
 */
public class ScannerThread extends Thread {
	
	public ScannerThread(Trainer parent_, final int[] dims0_, final int[] minDims_, final int[] maxDims_,
			final int seedsToEvaluate_, final int seedsToReturn_, final int epochs_, 
			final int maxSamples_, final long netSeed0_, final ArrayBlockingQueue<ArrayList<Seed>> returnQueue_) {
//		System.err.println("Made scanner ste="+seedsToEvaluate_+
//				", str="+seedsToReturn_+", e="+epochs_+", s="+netSeed0_);
		parent=parent_;
		dims0=dims0_;
		minDims=minDims_;
		maxDims=maxDims_;
		seedsToEvaluate=seedsToEvaluate_;
		seedsToReturn=seedsToReturn_;
		returnQueue=returnQueue_;
		maxEpochs=epochs_;
		maxSamples=maxSamples_;
		netSeed0=netSeed0_;
		randy=Shared.threadLocalRandom(netSeed0);
		heap=new PriorityQueue<CellNet>(seedsToReturn+1);
		
		jobsPerEpoch=parent.jobsPerEpoch;
		
		orderedJobs=parent.orderedJobs;
		launchInThread=parent.launchInThread;
		jobResultsQueue=new ArrayBlockingQueue<JobResults>(jobsPerEpoch);
		workerQueue=parent.workerQueue;
		launchQueue=(launchInThread ? new ArrayBlockingQueue<JobData>(2) : null);
		
		training=parent.training;
		
		targetError=parent.targetError;
		targetFPR=parent.targetFPR;
		targetFNR=parent.targetFNR;
		crossoverFpMult=parent.crossoverFpMult;

		sortAll=parent.sortAll;
		sort=parent.sort;
		sortInThread=parent.sortInThread;
		shuffleSubset=parent.shuffleSubset;
		
		fractionPerEpoch=parent.fractionPerEpoch0;
		
		alpha=parent.alphaZero;
		setLock=parent.useSetLock ? new ReentrantReadWriteLock() : null;
	}
	
	@Override
	public void run() {
		if(setLock!=null) {
//			System.err.println("Initial Lock");
			setLock.writeLock().lock();
		}
		synchronized(this) {
			//I really only need part of the data for this.
			data=(parent.data.copy(maxSamples, 0.25f));
			validateSet=data;

			if(launchInThread) {new LaunchThread().start();}

			for(int i=0; i<seedsToEvaluate; i++) {
				final long seed=(i==0 ? netSeed0 : randy.nextLong()&Long.MAX_VALUE);
				net0=parent.randomNetwork(seed);
				data.reset();
				runEpochs();
				//			if(heap.size()<seedsToReturn){
				//				heap.offer(net0);
				//			}else{
				//				//Only offer if better than worst
				//			}
				assert(validateThisEpoch) : currentEpoch;
				heap.offer(net0);
				if(heap.size()>seedsToReturn) {
					CellNet evict=heap.poll();
//					System.err.println(evict.header());
					assert(evict.compareTo(net0)<=0) : evict+", "+net0;
				}
				net0=null;
			}

			ArrayList<Seed> list=new ArrayList<Seed>(seedsToReturn);
			while(!heap.isEmpty()){
				CellNet net=heap.poll();
//				System.err.println(net.header());
				
				list.add(new Seed(net.seed, /*net.annealSeed,*/ net.pivot()));
			}

			try {
				returnQueue.put(list);
			} catch (InterruptedException e) {
				//In this case it looks like it fails.  But there's no return so who knows.
				e.printStackTrace();
			}

			if(launchInThread) {launchQueue.add(JobData.POISON);}
		}
		if(setLock!=null) {
//			System.err.println("Final Unlock");
			setLock.writeLock().unlock();
		}
	}

	private int runEpochs() {
		mprof.reset();
		currentEpoch=0;
		while(currentEpoch<maxEpochs) {
			mprof.reset();
			currentEpoch++;
			
			if(training && currentEpoch<=maxEpochs) {
				assert(jobResultsQueue.size()==0);
				assert(parent.networksPerCycle>1 || workerQueue.size()==0);
				runTrainingInterval();
				assert(jobResultsQueue.size()==0);
				assert(parent.networksPerCycle>1 || workerQueue.size()==0);
			}
			
			mprof.log();//?: 11078/10597
			//System.err.println("M finished epoch "+currentEpoch);
		}
		
		validateThisEpoch=true;
		if(validateThisEpoch){
			assert(jobResultsQueue.size()==0);
			assert(parent.networksPerCycle>1 || workerQueue.size()==0);
			runTestingInterval(validateSet.samples);
			assert(jobResultsQueue.size()==0);
			assert(parent.networksPerCycle>1 || workerQueue.size()==0);
//			assert(false) : validateSet.samples.length;
			reviseCutoff();
		}
		mprof.log();//12: 
		
		return currentEpoch;
	}
	
	private void runTrainingInterval() {
		float weightMult=0.5f;//TODO: Test high and low.  Or maybe 0.5f.
		assert(training);
		clearStats();
		net0.clear();
		mprof.log();//0: 614 / 564

		selectTrainingSubset();
		mprof.log();//1: 197101 / 9032

		assert(samplesThisEpoch>0) : samplesThisEpoch+", "+currentSamples.length;

		assert(jobResultsQueue.size()==0);
		assert(parent.networksPerCycle>1 || workerQueue.size()==0);

		int jobs=launchJobs(net0, currentSamples, samplesThisEpoch, training, weightMult, sort); //Takes longer with sortInThread (or higher fpe) because more samples are sent
		mprof.log();//2: 90239 / 140357
		
		gatherResults(net0, jobResultsQueue, training, jobs);
		lock();
		mprof.log();//3: 561312/661228
		//System.err.println("M done waiting for threads.");
		
		synchronized(net0) {
			//System.err.println("M checking epochs.");
			assert(jobResultsQueue.size()==0);
			assert(parent.networksPerCycle>1 || workerQueue.size()==0);

			//System.err.println("M gathering.");
			mergeStats(samplesThisEpoch);
			//		errorRate=weightedErrorRate;
			mprof.log();//4: 154/143

			net0.applyChanges(samplesThisEpoch, (float)alpha);
			mprof.log();//5: 2356/2134
		}
	}
	
	private void runTestingInterval(Sample[] set) {
//		synchronized(LOCK) {
			clearStats();
			net0.clear();
			int jobs=launchJobs(net0, set, set.length, false, 1.0f, false);
			mprof.log();//8: 1738/1709
//		}
		
		gatherResults(null, jobResultsQueue, false, jobs);
		lock();
		//System.err.println("M done waiting for threads.");

//		synchronized(LOCK) {
			mprof.log();//9: 23373/23901
			//System.err.println("M checking epochs.");
			assert(jobResultsQueue.size()==0);
			assert(parent.networksPerCycle>1 || workerQueue.size()==0);

			//System.err.println("M gathering.");
			mergeStats(set.length);
			//		errorRate=weightedErrorRate;
			mprof.log();//10: 0
//		}
	}
	
	void lock() {
//		System.err.println("Lock");
		if(setLock!=null) {
			setLock.readLock().unlock();
			setLock.writeLock().lock();
		}
	}
	
	void unlock() {
//		System.err.println("Unlock");
		if(setLock!=null) {
			setLock.writeLock().unlock();
			setLock.readLock().lock();
		}
	}
	
	/*--------------------------------------------------------------*/
	
	private class LaunchThread extends Thread{
		
		//Called by start()
		@Override
		public void run(){
			for(JobData job=getJob(); job!=JobData.POISON; job=getJob()) {
				launchJobsInner(job.immutableNet, job.set, job.maxSamples, job.epoch, job.alpha,  
						job.backprop, job.weightMult, job.sort);
			}
		}
		
		JobData getJob() {
			JobData job=null;
			while(job==null) {
				try {
					job=launchQueue.take();
				} catch (InterruptedException e) {
					e.printStackTrace();
				}
			}
			return job;
		}
			
	}
	
	private int launchJobs(CellNet net0, Sample[] set, int numSamples, boolean backprop, 
			float weightMult, boolean sort) {
		if(launchInThread) {
			JobData job=new JobData(net0, jobResultsQueue, currentEpoch, numSamples, alpha, 
					backprop, weightMult, sort, true, null, set, setLock, 0, 0);
			launchQueue.add(job);
			return jobsPerEpoch;
		}else {
			return launchJobsInner(net0, set, numSamples, currentEpoch, alpha, backprop, weightMult, sort);
		}
	}
	
	//Does not seem faster...
	private int launchJobsInner(CellNet net0, Sample[] set, int numSamples_, int epoch, double alpha, 
			boolean backprop, float weightMult, boolean sort) {
		if(setLock!=null) {return launchJobs_SetLock(net0, set, numSamples_, epoch, alpha, backprop, weightMult, sort);}
		//TODO: Eliminate this method if the above works
		
		
		//Note:  This is a little confusing because you may want to send more samples (samplesToSend)
		//than you actually want processed (numSamples) if sorting is being done per-thread.
		final int numSamples=Tools.min(numSamples_, set.length);
		final boolean sortFlag=sort && sortInThread && numSamples<set.length;
//		final float samplesPerThread=numSamples/(float)threads;
//		final int minSamplesPerThread=(int)samplesPerThread, maxSamplesPerThread=(int)Math.ceil(samplesPerThread);
		
		//Do not enable, or else different threadcounts will give different results
		//This is just for testing
		//Actually, this breaks the everything whether in sortInThread mode or not 
//		if(threads*maxSamplesPerThread<=set.length) {numSamples=threads*maxSamplesPerThread;}
		
		final int samplesToSend=(sortFlag ? set.length : numSamples);//This is the only difference
		final int listLen=(samplesToSend+jobsPerEpoch-1)/jobsPerEpoch;
		
//		int[] sizes=new int[threads];
		//This sizes[] is necessary or else it goes crazy in sortinthread mode
		//for reasons I do not understand
//		System.err.println("epoch="+epoch+", sts="+samplesToSend+", training="+training);

		int sent=0;
		int jobs=0;
		final CellNet net=net0.copy(false);
		for(int jid=0; jid<jobsPerEpoch && jid<numSamples; jid++){
			ArrayList<Sample> list=new ArrayList<Sample>(listLen);
			int idx=jid;
			while(idx<numSamples) {
				list.add(set[idx]);
				idx+=jobsPerEpoch;
			}
			final int toProcess=list.size();
			if(sortFlag) {
				while(idx<samplesToSend) {
					list.add(set[idx]);
					idx+=jobsPerEpoch;
				}
			}
			assert(toProcess>0 && toProcess<=list.size()) : toProcess+", "+list.size()+
				", e="+epoch+", j="+jid+", ns="+numSamples;
//			System.err.println("st1: toProcess="+toProcess+", size="+list.size());
//			
//			System.err.println("Calling new JobData("+net.dims+", "+jobResultsQueue.size()+", "+epoch+", "+
//					toProcess+", "+alpha+", "+backprop+", "+sort+", "+list.size()+", "+null+", "+jid+")");
			
			final JobData job=new JobData(net, jobResultsQueue, epoch, toProcess, 
					alpha, backprop, weightMult, sort, true, list, null, null, jid, 0);
//			System.err.println("st2: toProcess="+toProcess+", size="+list.size());
			jobs++;
//			System.err.println(job);
			sent+=list.size();
			workerQueue.add(job);
		}
		
		
		assert((sent==numSamples && !sort) || (sent==samplesToSend && sort)) : 
			"sort="+sort+", sent="+sent+", samples="+numSamples+", samples_="+numSamples_+", "+
			"toSend="+samplesToSend+", setlen="+set.length+", jobs="+jobsPerEpoch+", listlen="+listLen;
		
		if(sortFlag & shuffleSubset && ((epoch&7)==3)) {
			currentSubset.shuffle();
		}
		return jobs;
	}
	
	private int launchJobs_SetLock(CellNet net0, Sample[] set, int numSamples_, int epoch, double alpha, 
			boolean backprop, float weightMult, boolean sort) {
		
		final int numSamples=Tools.min(numSamples_, set.length);

//		assert(!sort);
		int sent=0;
		int jobs=0;
		
		final CellNet immutableNet=Trainer.copyNetInWorkerThread ||  Trainer.setNetInWorkerThread ? net0.copy(false) : null;
//		final CellNet immutableNet=Trainer.copyNetInWorkerThread ||  Trainer.setNetInWorkerThread ? net00.setFrom(net0, false) : null;
		unlock();
		for(int jid=0; jid<jobsPerEpoch; jid++){
			
			final int toProcess=(numSamples-jid+jobsPerEpoch-1)/jobsPerEpoch;//I think this is right
			final JobData job;
//			if(Trainer.copyNetInWorkerThread){
				job=new JobData(immutableNet, jobResultsQueue, epoch, numSamples, alpha, 
						backprop, weightMult, false, true, null, set, setLock, jid, jobsPerEpoch);
//			}else{
//				if(Trainer.setNetInWorkerThread) {
//					job=new JobData(Trainer.setNetInWorkerThread ? immutableNet : null, jobResultsQueue, epoch, numSamples, alpha, 
//							backprop, weightMult, false, false, null, set, setLock, jid, jobsPerEpoch);
//				}else{
//					synchronized(net0) {
//						synchronized(subnets[jid]) {
//							subnets[jid].setFrom(net0, false);
//						}
//					}
//					job=new JobData(null, jobResultsQueue, epoch, numSamples, alpha, 
//							backprop, weightMult, false, false, null, set, setLock, jid, jobsPerEpoch);
//				}
//				job.mutableNet=subnets[jid];
//			}
			jobs++;
			sent+=toProcess;
			workerQueue.add(job);
		}
		
		assert(sent==numSamples && jobs==jobsPerEpoch) : 
			"sort="+sort+", sent="+sent+", samples="+numSamples+", samples_="+numSamples_+", "+
			", setlen="+set.length+", jobs="+jobsPerEpoch;
		return jobs;
	}
	
	private void gatherResults(final CellNet net0, final ArrayBlockingQueue<JobResults> mq, 
			final boolean accumulate, final int numJobs) {
		if(orderedJobs) {
			gatherResultsOrdered(net0, mq, accumulate, numJobs);
		}else {
			gatherResultsDisordered(net0, mq, accumulate, numJobs);
		}
	}
	
	private void gatherResultsDisordered(final CellNet net0, final ArrayBlockingQueue<JobResults> mq, 
			final boolean accumulate, final int numJobs) {
		//System.err.println("M waiting for threads.");
		for(int i=0; i<numJobs; i++) {
			JobResults job=null;
			while(job==null) {
				try {job=mq.take();} 
				catch (InterruptedException e){e.printStackTrace();}
			}
			assert(job.epoch==currentEpoch) : job.epoch+", "+currentEpoch+", "+job.tid;
			gatherStats(job);
			if(accumulate && job.net!=null) {net0.accumulate(job.net);}
			else {assert(!accumulate || jobsPerEpoch>samplesThisEpoch);}
		}
	}
	
	private void gatherResultsOrdered(final CellNet net0, final ArrayBlockingQueue<JobResults> mq, 
			final boolean accumulate, final int numJobs) {
		JobResults[] results=new JobResults[numJobs];
		//System.err.println("M waiting for threads.");
		
		int next=0;
		for(int i=0; i<numJobs; i++) {
			{//Get a job
				JobResults job=null;
				while(job==null) {
					try {job=mq.take();} 
					catch (InterruptedException e){e.printStackTrace();}
				}
				assert(job.epoch==currentEpoch) : job.epoch+", "+currentEpoch+", "+job.tid;
				results[job.jid]=job;
			}
			
			//Process as many consecutive jobs as are available 
			while(next<numJobs && results[next]!=null){
				final JobResults job=results[next];
				gatherStats(job);
				if(accumulate && job.net!=null) {net0.accumulate(job.net);}
				else {assert(!accumulate || jobsPerEpoch>samplesThisEpoch);}
				next++;
			}
		}
	}
	
	private void selectTrainingSubset() {
		currentSubset=data.currentSubset(currentEpoch);
		currentSamples=currentSubset.samples;
		assert(currentSamples!=null && currentSamples.length>0) : currentSamples+", "+currentEpoch+", "+data.samples.length;
		if(currentEpoch<currentSubset.nextFullPassEpoch) {
			if(currentEpoch>=2) {
				samplesThisEpoch=(int)Tools.min(currentSamples.length, Tools.max(4, jobsPerEpoch, currentSamples.length*fractionPerEpoch));
				assert(samplesThisEpoch>0) : samplesThisEpoch+", "+currentSamples.length+", "+jobsPerEpoch+", "+fractionPerEpoch;
			}else{
				samplesThisEpoch=currentSamples.length;
				assert(samplesThisEpoch>0) : samplesThisEpoch+", "+currentSamples.length+", "+jobsPerEpoch+", "+fractionPerEpoch;
			}
		}else {
			samplesThisEpoch=currentSamples.length;
			currentSubset.nextFullPassEpoch=currentEpoch+SampleSet.subsetInterval;
//			System.err.println("B:"+currentSubset.nextFullPassEpoch+","+samplesThisEpoch);
			assert(samplesThisEpoch>0) : samplesThisEpoch+", "+currentSamples.length+", "+jobsPerEpoch+", "+fractionPerEpoch;
			
		}
//		System.err.println("samplesThisEpoch="+samplesThisEpoch+", ce="+currentEpoch+", dsl="+
//			data.samples.length+", csl="+currentSamples.length+", jpe="+jobsPerEpoch+", fpe="+fractionPerEpoch);
		
		if(!sort || samplesThisEpoch>=currentSamples.length || sortInThread) {return;}
		if(sortAll || (currentEpoch&3)==1) {
			currentSubset.sortSamples(1f, false);
		}else if((currentEpoch&3)==3){
			currentSubset.sortSamples(fractionPerEpoch*3, false);
		}
	}
	
	private void clearStats() {
		rawErrorSum=0;
		weightedErrorSum=0;
		tpSum=tnSum=fpSum=fnSum=0;
	}
	
	private void gatherStats(JobResults job) {
		rawErrorSum+=job.errorSum;
		weightedErrorSum+=job.weightedErrorSum;
		tpSum+=job.tpSum;
		tnSum+=job.tnSum;
		fpSum+=job.fpSum;
		fnSum+=job.fnSum;
	}
	
	private void mergeStats(int samples) {
		final double invSamples=1.0/samples;
		final double invOutputs=1.0/data.matrix.numOutputs;
//		final double e1=net0.errorSum*invSamples;
//		final double we1=net0.weightedErrorSum*invSamples;
		
//		assert(false) : "TP="+tpSum+", TN="+tnSum+", FP="+fpSum+", FN="+fnSum+"; sum="+(tpSum+tnSum+fpSum+fnSum);
		fpRate=fpSum*invSamples*invOutputs;
		fnRate=fnSum*invSamples*invOutputs;
		tpRate=tpSum*invSamples*invOutputs;
		tnRate=tnSum*invSamples*invOutputs;
		final double e3=rawErrorSum*invSamples;
		final double we3=weightedErrorSum*invSamples;
		
//		assert!Double.isNaN(e3) : invSamples;

		rawErrorRate=e3;//Tools.max(e1, e3);//, e2);
		weightedErrorRate=we3;//Tools.max(we1, we3);//, e2);
		setNetStats(net0);
	}
	
	void reviseCutoff() {
		
		SampleSet set=validateSet;
		if(validateThisEpoch){
			if(crossoverFpMult>0) {
				set.sortByValue();
				lastCutoffForTarget=set.calcCutoffFromCrossover(crossoverFpMult);
				fpRate=set.calcFPRFromCutoff(lastCutoffForTarget);
				fnRate=set.calcFNRFromCutoff(lastCutoffForTarget);
			}else if(targetFPR>=0) {
				set.sortByValue();
				fpRate=targetFPR;
				fnRate=set.calcFNRFromFPR(targetFPR);
				lastCutoffForTarget=set.calcCutoffFromFPR(fpRate);
			}else if(targetFNR>=0) {
				set.sortByValue();
				fnRate=targetFNR;
				fpRate=set.calcFPRFromFNR(targetFNR);
				lastCutoffForTarget=set.calcCutoffFromFNR(fnRate);//TODO: Test this function
			}else{
				lastCutoffForTarget=Trainer.cutoffForEvaluation;
//				fpRate=validateSet.calcFPRFromCutoff(lastCutoff);
//				fnRate=validateSet.calcFNRFromCutoff(lastCutoff);
			}
			tpRate=(set.numPositive/(double)set.samples.length)-fnRate;
			tnRate=(set.numNegative/(double)set.samples.length)-fpRate;
		}else {
			lastCutoffForTarget=Trainer.cutoffForEvaluation;
		}
		setNetStats(net0);
	}
	
	private void setNetStats(CellNet net) {
		net.fpRate=(float) fpRate;
		net.fnRate=(float) fnRate;
		net.tpRate=(float) tpRate;
		net.tnRate=(float) tnRate;
		net.errorRate=(float) rawErrorRate;
		net.weightedErrorRate=(float) weightedErrorRate;
		net.alpha=(float) alpha;
		net.annealStrength=0;
		net.epoch=currentEpoch;
		net.setCutoff((float) lastCutoffForTarget);
	}
	
	/*--------------------------------------------------------------*/
	
	public final boolean success(){return !errorState;}
	
	/*--------------------------------------------------------------*/
	/*----------------        Common Fields         ----------------*/
	/*--------------------------------------------------------------*/
	
	private final Trainer parent;
	private final int[] dims0;
	private final int[] minDims;
	private final int[] maxDims;
	private final int seedsToEvaluate;
	private final int seedsToReturn;
	private final long netSeed0;
	private final PriorityQueue<CellNet> heap;
	final ArrayBlockingQueue<ArrayList<Seed>> returnQueue;
	
	private CellNet net0;//Network being evaluated

	/*--------------------------------------------------------------*/

	private SampleSet data;
	private SampleSet validateSet;
	
	private Subset currentSubset;
	private Sample[] currentSamples;
	
	private final ReentrantReadWriteLock setLock;
	
//	private CellNet bestNetwork;//Best observed network

	/*--------------------------------------------------------------*/
	
	private final int jobsPerEpoch;
	
	private final boolean orderedJobs; //Without ordered, very very slight nondeterminism.
	private final ArrayBlockingQueue<JobResults> jobResultsQueue;
	private final ArrayBlockingQueue<JobData> workerQueue;
	private final ArrayBlockingQueue<JobData> launchQueue;
	final Profiler mprof=new Profiler("M", 13);
	
	private final boolean training;
	
	/*--------------------------------------------------------------*/
	
	final int maxEpochs;
	final int maxSamples;
	final float targetError;
	final float targetFPR;
	final float targetFNR;
	final float crossoverFpMult;
	
	/*--------------------------------------------------------------*/

	final boolean sortAll;
	final boolean sort;
	final boolean sortInThread;
	final boolean shuffleSubset; //Only if sortInThread is true
	final boolean launchInThread;
	
	/*--------------------------------------------------------------*/
	
	final double alpha;
	
	private final float fractionPerEpoch;
	
	/*--------------------------------------------------------------*/
	
	float bestErrorRate=999;
	float bestFNR=999;

	double rawErrorSum=0;
	double weightedErrorSum=0;
	long tpSum=0, tnSum=0, fpSum=0, fnSum=0;

	double rawErrorRate=999f;
	double weightedErrorRate=999f;
	
	double fpRate=0, fnRate=0, tpRate, tnRate, crossover;
	double lastCutoffForTarget=1.0f;
	
	/*--------------------------------------------------------------*/
	
	private int samplesThisEpoch=-1;
	private boolean validateThisEpoch=false;
	private int currentEpoch=0;
	
	/*--------------------------------------------------------------*/
	/*----------------         Final Fields         ----------------*/
	/*--------------------------------------------------------------*/
	
	final Random randy;
	
	/*--------------------------------------------------------------*/
	/*----------------        Common Fields         ----------------*/
	/*--------------------------------------------------------------*/
	
	/** Print status messages to this output stream */
	private PrintStream outstream=System.err;
	/** Print verbose messages */
	public static boolean verbose=false;
	/** True if an error was encountered */
	public boolean errorState=false;
	
}