1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
package ml;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.PriorityQueue;
import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import shared.Shared;
import shared.Tools;
/**
* The goal of this thread is to generate lots of networks,
* evaluate them, and return the best candidates.
* @author BBushnell
*
*/
public class ScannerThread extends Thread {
public ScannerThread(Trainer parent_, final int[] dims0_, final int[] minDims_, final int[] maxDims_,
final int seedsToEvaluate_, final int seedsToReturn_, final int epochs_,
final int maxSamples_, final long netSeed0_, final ArrayBlockingQueue<ArrayList<Seed>> returnQueue_) {
// System.err.println("Made scanner ste="+seedsToEvaluate_+
// ", str="+seedsToReturn_+", e="+epochs_+", s="+netSeed0_);
parent=parent_;
dims0=dims0_;
minDims=minDims_;
maxDims=maxDims_;
seedsToEvaluate=seedsToEvaluate_;
seedsToReturn=seedsToReturn_;
returnQueue=returnQueue_;
maxEpochs=epochs_;
maxSamples=maxSamples_;
netSeed0=netSeed0_;
randy=Shared.threadLocalRandom(netSeed0);
heap=new PriorityQueue<CellNet>(seedsToReturn+1);
jobsPerEpoch=parent.jobsPerEpoch;
orderedJobs=parent.orderedJobs;
launchInThread=parent.launchInThread;
jobResultsQueue=new ArrayBlockingQueue<JobResults>(jobsPerEpoch);
workerQueue=parent.workerQueue;
launchQueue=(launchInThread ? new ArrayBlockingQueue<JobData>(2) : null);
training=parent.training;
targetError=parent.targetError;
targetFPR=parent.targetFPR;
targetFNR=parent.targetFNR;
crossoverFpMult=parent.crossoverFpMult;
sortAll=parent.sortAll;
sort=parent.sort;
sortInThread=parent.sortInThread;
shuffleSubset=parent.shuffleSubset;
fractionPerEpoch=parent.fractionPerEpoch0;
alpha=parent.alphaZero;
setLock=parent.useSetLock ? new ReentrantReadWriteLock() : null;
}
@Override
public void run() {
if(setLock!=null) {
// System.err.println("Initial Lock");
setLock.writeLock().lock();
}
synchronized(this) {
//I really only need part of the data for this.
data=(parent.data.copy(maxSamples, 0.25f));
validateSet=data;
if(launchInThread) {new LaunchThread().start();}
for(int i=0; i<seedsToEvaluate; i++) {
final long seed=(i==0 ? netSeed0 : randy.nextLong()&Long.MAX_VALUE);
net0=parent.randomNetwork(seed);
data.reset();
runEpochs();
// if(heap.size()<seedsToReturn){
// heap.offer(net0);
// }else{
// //Only offer if better than worst
// }
assert(validateThisEpoch) : currentEpoch;
heap.offer(net0);
if(heap.size()>seedsToReturn) {
CellNet evict=heap.poll();
// System.err.println(evict.header());
assert(evict.compareTo(net0)<=0) : evict+", "+net0;
}
net0=null;
}
ArrayList<Seed> list=new ArrayList<Seed>(seedsToReturn);
while(!heap.isEmpty()){
CellNet net=heap.poll();
// System.err.println(net.header());
list.add(new Seed(net.seed, /*net.annealSeed,*/ net.pivot()));
}
try {
returnQueue.put(list);
} catch (InterruptedException e) {
//In this case it looks like it fails. But there's no return so who knows.
e.printStackTrace();
}
if(launchInThread) {launchQueue.add(JobData.POISON);}
}
if(setLock!=null) {
// System.err.println("Final Unlock");
setLock.writeLock().unlock();
}
}
private int runEpochs() {
mprof.reset();
currentEpoch=0;
while(currentEpoch<maxEpochs) {
mprof.reset();
currentEpoch++;
if(training && currentEpoch<=maxEpochs) {
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
runTrainingInterval();
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
}
mprof.log();//?: 11078/10597
//System.err.println("M finished epoch "+currentEpoch);
}
validateThisEpoch=true;
if(validateThisEpoch){
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
runTestingInterval(validateSet.samples);
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
// assert(false) : validateSet.samples.length;
reviseCutoff();
}
mprof.log();//12:
return currentEpoch;
}
private void runTrainingInterval() {
float weightMult=0.5f;//TODO: Test high and low. Or maybe 0.5f.
assert(training);
clearStats();
net0.clear();
mprof.log();//0: 614 / 564
selectTrainingSubset();
mprof.log();//1: 197101 / 9032
assert(samplesThisEpoch>0) : samplesThisEpoch+", "+currentSamples.length;
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
int jobs=launchJobs(net0, currentSamples, samplesThisEpoch, training, weightMult, sort); //Takes longer with sortInThread (or higher fpe) because more samples are sent
mprof.log();//2: 90239 / 140357
gatherResults(net0, jobResultsQueue, training, jobs);
lock();
mprof.log();//3: 561312/661228
//System.err.println("M done waiting for threads.");
synchronized(net0) {
//System.err.println("M checking epochs.");
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
//System.err.println("M gathering.");
mergeStats(samplesThisEpoch);
// errorRate=weightedErrorRate;
mprof.log();//4: 154/143
net0.applyChanges(samplesThisEpoch, (float)alpha);
mprof.log();//5: 2356/2134
}
}
private void runTestingInterval(Sample[] set) {
// synchronized(LOCK) {
clearStats();
net0.clear();
int jobs=launchJobs(net0, set, set.length, false, 1.0f, false);
mprof.log();//8: 1738/1709
// }
gatherResults(null, jobResultsQueue, false, jobs);
lock();
//System.err.println("M done waiting for threads.");
// synchronized(LOCK) {
mprof.log();//9: 23373/23901
//System.err.println("M checking epochs.");
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
//System.err.println("M gathering.");
mergeStats(set.length);
// errorRate=weightedErrorRate;
mprof.log();//10: 0
// }
}
void lock() {
// System.err.println("Lock");
if(setLock!=null) {
setLock.readLock().unlock();
setLock.writeLock().lock();
}
}
void unlock() {
// System.err.println("Unlock");
if(setLock!=null) {
setLock.writeLock().unlock();
setLock.readLock().lock();
}
}
/*--------------------------------------------------------------*/
private class LaunchThread extends Thread{
//Called by start()
@Override
public void run(){
for(JobData job=getJob(); job!=JobData.POISON; job=getJob()) {
launchJobsInner(job.immutableNet, job.set, job.maxSamples, job.epoch, job.alpha,
job.backprop, job.weightMult, job.sort);
}
}
JobData getJob() {
JobData job=null;
while(job==null) {
try {
job=launchQueue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
return job;
}
}
private int launchJobs(CellNet net0, Sample[] set, int numSamples, boolean backprop,
float weightMult, boolean sort) {
if(launchInThread) {
JobData job=new JobData(net0, jobResultsQueue, currentEpoch, numSamples, alpha,
backprop, weightMult, sort, true, null, set, setLock, 0, 0);
launchQueue.add(job);
return jobsPerEpoch;
}else {
return launchJobsInner(net0, set, numSamples, currentEpoch, alpha, backprop, weightMult, sort);
}
}
//Does not seem faster...
private int launchJobsInner(CellNet net0, Sample[] set, int numSamples_, int epoch, double alpha,
boolean backprop, float weightMult, boolean sort) {
if(setLock!=null) {return launchJobs_SetLock(net0, set, numSamples_, epoch, alpha, backprop, weightMult, sort);}
//TODO: Eliminate this method if the above works
//Note: This is a little confusing because you may want to send more samples (samplesToSend)
//than you actually want processed (numSamples) if sorting is being done per-thread.
final int numSamples=Tools.min(numSamples_, set.length);
final boolean sortFlag=sort && sortInThread && numSamples<set.length;
// final float samplesPerThread=numSamples/(float)threads;
// final int minSamplesPerThread=(int)samplesPerThread, maxSamplesPerThread=(int)Math.ceil(samplesPerThread);
//Do not enable, or else different threadcounts will give different results
//This is just for testing
//Actually, this breaks the everything whether in sortInThread mode or not
// if(threads*maxSamplesPerThread<=set.length) {numSamples=threads*maxSamplesPerThread;}
final int samplesToSend=(sortFlag ? set.length : numSamples);//This is the only difference
final int listLen=(samplesToSend+jobsPerEpoch-1)/jobsPerEpoch;
// int[] sizes=new int[threads];
//This sizes[] is necessary or else it goes crazy in sortinthread mode
//for reasons I do not understand
// System.err.println("epoch="+epoch+", sts="+samplesToSend+", training="+training);
int sent=0;
int jobs=0;
final CellNet net=net0.copy(false);
for(int jid=0; jid<jobsPerEpoch && jid<numSamples; jid++){
ArrayList<Sample> list=new ArrayList<Sample>(listLen);
int idx=jid;
while(idx<numSamples) {
list.add(set[idx]);
idx+=jobsPerEpoch;
}
final int toProcess=list.size();
if(sortFlag) {
while(idx<samplesToSend) {
list.add(set[idx]);
idx+=jobsPerEpoch;
}
}
assert(toProcess>0 && toProcess<=list.size()) : toProcess+", "+list.size()+
", e="+epoch+", j="+jid+", ns="+numSamples;
// System.err.println("st1: toProcess="+toProcess+", size="+list.size());
//
// System.err.println("Calling new JobData("+net.dims+", "+jobResultsQueue.size()+", "+epoch+", "+
// toProcess+", "+alpha+", "+backprop+", "+sort+", "+list.size()+", "+null+", "+jid+")");
final JobData job=new JobData(net, jobResultsQueue, epoch, toProcess,
alpha, backprop, weightMult, sort, true, list, null, null, jid, 0);
// System.err.println("st2: toProcess="+toProcess+", size="+list.size());
jobs++;
// System.err.println(job);
sent+=list.size();
workerQueue.add(job);
}
assert((sent==numSamples && !sort) || (sent==samplesToSend && sort)) :
"sort="+sort+", sent="+sent+", samples="+numSamples+", samples_="+numSamples_+", "+
"toSend="+samplesToSend+", setlen="+set.length+", jobs="+jobsPerEpoch+", listlen="+listLen;
if(sortFlag & shuffleSubset && ((epoch&7)==3)) {
currentSubset.shuffle();
}
return jobs;
}
private int launchJobs_SetLock(CellNet net0, Sample[] set, int numSamples_, int epoch, double alpha,
boolean backprop, float weightMult, boolean sort) {
final int numSamples=Tools.min(numSamples_, set.length);
// assert(!sort);
int sent=0;
int jobs=0;
final CellNet immutableNet=Trainer.copyNetInWorkerThread || Trainer.setNetInWorkerThread ? net0.copy(false) : null;
// final CellNet immutableNet=Trainer.copyNetInWorkerThread || Trainer.setNetInWorkerThread ? net00.setFrom(net0, false) : null;
unlock();
for(int jid=0; jid<jobsPerEpoch; jid++){
final int toProcess=(numSamples-jid+jobsPerEpoch-1)/jobsPerEpoch;//I think this is right
final JobData job;
// if(Trainer.copyNetInWorkerThread){
job=new JobData(immutableNet, jobResultsQueue, epoch, numSamples, alpha,
backprop, weightMult, false, true, null, set, setLock, jid, jobsPerEpoch);
// }else{
// if(Trainer.setNetInWorkerThread) {
// job=new JobData(Trainer.setNetInWorkerThread ? immutableNet : null, jobResultsQueue, epoch, numSamples, alpha,
// backprop, weightMult, false, false, null, set, setLock, jid, jobsPerEpoch);
// }else{
// synchronized(net0) {
// synchronized(subnets[jid]) {
// subnets[jid].setFrom(net0, false);
// }
// }
// job=new JobData(null, jobResultsQueue, epoch, numSamples, alpha,
// backprop, weightMult, false, false, null, set, setLock, jid, jobsPerEpoch);
// }
// job.mutableNet=subnets[jid];
// }
jobs++;
sent+=toProcess;
workerQueue.add(job);
}
assert(sent==numSamples && jobs==jobsPerEpoch) :
"sort="+sort+", sent="+sent+", samples="+numSamples+", samples_="+numSamples_+", "+
", setlen="+set.length+", jobs="+jobsPerEpoch;
return jobs;
}
private void gatherResults(final CellNet net0, final ArrayBlockingQueue<JobResults> mq,
final boolean accumulate, final int numJobs) {
if(orderedJobs) {
gatherResultsOrdered(net0, mq, accumulate, numJobs);
}else {
gatherResultsDisordered(net0, mq, accumulate, numJobs);
}
}
private void gatherResultsDisordered(final CellNet net0, final ArrayBlockingQueue<JobResults> mq,
final boolean accumulate, final int numJobs) {
//System.err.println("M waiting for threads.");
for(int i=0; i<numJobs; i++) {
JobResults job=null;
while(job==null) {
try {job=mq.take();}
catch (InterruptedException e){e.printStackTrace();}
}
assert(job.epoch==currentEpoch) : job.epoch+", "+currentEpoch+", "+job.tid;
gatherStats(job);
if(accumulate && job.net!=null) {net0.accumulate(job.net);}
else {assert(!accumulate || jobsPerEpoch>samplesThisEpoch);}
}
}
private void gatherResultsOrdered(final CellNet net0, final ArrayBlockingQueue<JobResults> mq,
final boolean accumulate, final int numJobs) {
JobResults[] results=new JobResults[numJobs];
//System.err.println("M waiting for threads.");
int next=0;
for(int i=0; i<numJobs; i++) {
{//Get a job
JobResults job=null;
while(job==null) {
try {job=mq.take();}
catch (InterruptedException e){e.printStackTrace();}
}
assert(job.epoch==currentEpoch) : job.epoch+", "+currentEpoch+", "+job.tid;
results[job.jid]=job;
}
//Process as many consecutive jobs as are available
while(next<numJobs && results[next]!=null){
final JobResults job=results[next];
gatherStats(job);
if(accumulate && job.net!=null) {net0.accumulate(job.net);}
else {assert(!accumulate || jobsPerEpoch>samplesThisEpoch);}
next++;
}
}
}
private void selectTrainingSubset() {
currentSubset=data.currentSubset(currentEpoch);
currentSamples=currentSubset.samples;
assert(currentSamples!=null && currentSamples.length>0) : currentSamples+", "+currentEpoch+", "+data.samples.length;
if(currentEpoch<currentSubset.nextFullPassEpoch) {
if(currentEpoch>=2) {
samplesThisEpoch=(int)Tools.min(currentSamples.length, Tools.max(4, jobsPerEpoch, currentSamples.length*fractionPerEpoch));
assert(samplesThisEpoch>0) : samplesThisEpoch+", "+currentSamples.length+", "+jobsPerEpoch+", "+fractionPerEpoch;
}else{
samplesThisEpoch=currentSamples.length;
assert(samplesThisEpoch>0) : samplesThisEpoch+", "+currentSamples.length+", "+jobsPerEpoch+", "+fractionPerEpoch;
}
}else {
samplesThisEpoch=currentSamples.length;
currentSubset.nextFullPassEpoch=currentEpoch+SampleSet.subsetInterval;
// System.err.println("B:"+currentSubset.nextFullPassEpoch+","+samplesThisEpoch);
assert(samplesThisEpoch>0) : samplesThisEpoch+", "+currentSamples.length+", "+jobsPerEpoch+", "+fractionPerEpoch;
}
// System.err.println("samplesThisEpoch="+samplesThisEpoch+", ce="+currentEpoch+", dsl="+
// data.samples.length+", csl="+currentSamples.length+", jpe="+jobsPerEpoch+", fpe="+fractionPerEpoch);
if(!sort || samplesThisEpoch>=currentSamples.length || sortInThread) {return;}
if(sortAll || (currentEpoch&3)==1) {
currentSubset.sortSamples(1f, false);
}else if((currentEpoch&3)==3){
currentSubset.sortSamples(fractionPerEpoch*3, false);
}
}
private void clearStats() {
rawErrorSum=0;
weightedErrorSum=0;
tpSum=tnSum=fpSum=fnSum=0;
}
private void gatherStats(JobResults job) {
rawErrorSum+=job.errorSum;
weightedErrorSum+=job.weightedErrorSum;
tpSum+=job.tpSum;
tnSum+=job.tnSum;
fpSum+=job.fpSum;
fnSum+=job.fnSum;
}
private void mergeStats(int samples) {
final double invSamples=1.0/samples;
final double invOutputs=1.0/data.matrix.numOutputs;
// final double e1=net0.errorSum*invSamples;
// final double we1=net0.weightedErrorSum*invSamples;
// assert(false) : "TP="+tpSum+", TN="+tnSum+", FP="+fpSum+", FN="+fnSum+"; sum="+(tpSum+tnSum+fpSum+fnSum);
fpRate=fpSum*invSamples*invOutputs;
fnRate=fnSum*invSamples*invOutputs;
tpRate=tpSum*invSamples*invOutputs;
tnRate=tnSum*invSamples*invOutputs;
final double e3=rawErrorSum*invSamples;
final double we3=weightedErrorSum*invSamples;
// assert!Double.isNaN(e3) : invSamples;
rawErrorRate=e3;//Tools.max(e1, e3);//, e2);
weightedErrorRate=we3;//Tools.max(we1, we3);//, e2);
setNetStats(net0);
}
void reviseCutoff() {
SampleSet set=validateSet;
if(validateThisEpoch){
if(crossoverFpMult>0) {
set.sortByValue();
lastCutoffForTarget=set.calcCutoffFromCrossover(crossoverFpMult);
fpRate=set.calcFPRFromCutoff(lastCutoffForTarget);
fnRate=set.calcFNRFromCutoff(lastCutoffForTarget);
}else if(targetFPR>=0) {
set.sortByValue();
fpRate=targetFPR;
fnRate=set.calcFNRFromFPR(targetFPR);
lastCutoffForTarget=set.calcCutoffFromFPR(fpRate);
}else if(targetFNR>=0) {
set.sortByValue();
fnRate=targetFNR;
fpRate=set.calcFPRFromFNR(targetFNR);
lastCutoffForTarget=set.calcCutoffFromFNR(fnRate);//TODO: Test this function
}else{
lastCutoffForTarget=Trainer.cutoffForEvaluation;
// fpRate=validateSet.calcFPRFromCutoff(lastCutoff);
// fnRate=validateSet.calcFNRFromCutoff(lastCutoff);
}
tpRate=(set.numPositive/(double)set.samples.length)-fnRate;
tnRate=(set.numNegative/(double)set.samples.length)-fpRate;
}else {
lastCutoffForTarget=Trainer.cutoffForEvaluation;
}
setNetStats(net0);
}
private void setNetStats(CellNet net) {
net.fpRate=(float) fpRate;
net.fnRate=(float) fnRate;
net.tpRate=(float) tpRate;
net.tnRate=(float) tnRate;
net.errorRate=(float) rawErrorRate;
net.weightedErrorRate=(float) weightedErrorRate;
net.alpha=(float) alpha;
net.annealStrength=0;
net.epoch=currentEpoch;
net.setCutoff((float) lastCutoffForTarget);
}
/*--------------------------------------------------------------*/
public final boolean success(){return !errorState;}
/*--------------------------------------------------------------*/
/*---------------- Common Fields ----------------*/
/*--------------------------------------------------------------*/
private final Trainer parent;
private final int[] dims0;
private final int[] minDims;
private final int[] maxDims;
private final int seedsToEvaluate;
private final int seedsToReturn;
private final long netSeed0;
private final PriorityQueue<CellNet> heap;
final ArrayBlockingQueue<ArrayList<Seed>> returnQueue;
private CellNet net0;//Network being evaluated
/*--------------------------------------------------------------*/
private SampleSet data;
private SampleSet validateSet;
private Subset currentSubset;
private Sample[] currentSamples;
private final ReentrantReadWriteLock setLock;
// private CellNet bestNetwork;//Best observed network
/*--------------------------------------------------------------*/
private final int jobsPerEpoch;
private final boolean orderedJobs; //Without ordered, very very slight nondeterminism.
private final ArrayBlockingQueue<JobResults> jobResultsQueue;
private final ArrayBlockingQueue<JobData> workerQueue;
private final ArrayBlockingQueue<JobData> launchQueue;
final Profiler mprof=new Profiler("M", 13);
private final boolean training;
/*--------------------------------------------------------------*/
final int maxEpochs;
final int maxSamples;
final float targetError;
final float targetFPR;
final float targetFNR;
final float crossoverFpMult;
/*--------------------------------------------------------------*/
final boolean sortAll;
final boolean sort;
final boolean sortInThread;
final boolean shuffleSubset; //Only if sortInThread is true
final boolean launchInThread;
/*--------------------------------------------------------------*/
final double alpha;
private final float fractionPerEpoch;
/*--------------------------------------------------------------*/
float bestErrorRate=999;
float bestFNR=999;
double rawErrorSum=0;
double weightedErrorSum=0;
long tpSum=0, tnSum=0, fpSum=0, fnSum=0;
double rawErrorRate=999f;
double weightedErrorRate=999f;
double fpRate=0, fnRate=0, tpRate, tnRate, crossover;
double lastCutoffForTarget=1.0f;
/*--------------------------------------------------------------*/
private int samplesThisEpoch=-1;
private boolean validateThisEpoch=false;
private int currentEpoch=0;
/*--------------------------------------------------------------*/
/*---------------- Final Fields ----------------*/
/*--------------------------------------------------------------*/
final Random randy;
/*--------------------------------------------------------------*/
/*---------------- Common Fields ----------------*/
/*--------------------------------------------------------------*/
/** Print status messages to this output stream */
private PrintStream outstream=System.err;
/** Print verbose messages */
public static boolean verbose=false;
/** True if an error was encountered */
public boolean errorState=false;
}
|