File: TrainerThread.java

package info (click to toggle)
bbmap 39.20%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 26,024 kB
  • sloc: java: 312,743; sh: 18,099; python: 5,247; ansic: 2,074; perl: 96; makefile: 39; xml: 38
file content (1013 lines) | stat: -rwxr-xr-x 36,314 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
package ml;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.locks.ReentrantReadWriteLock;

import shared.Tools;
import structures.FloatList;

public class TrainerThread extends Thread {
	
	public TrainerThread(Trainer parent_, CellNet net0_) {
		parent=parent_;
		net0=net0_;
		net00=net0.copy(false);
		randyAnneal=new Random(net00.seed);
		
		jobsPerEpoch=parent.jobsPerEpoch;
		
		orderedJobs=parent.orderedJobs;
		launchInThread=parent.launchInThread;
		jobResultsQueue=new ArrayBlockingQueue<JobResults>(jobsPerEpoch);
		workerQueue=parent.workerQueue;
		launchQueue=(launchInThread ? new ArrayBlockingQueue<JobData>(2) : null);
		
		training=parent.training;
		
		maxEpochs=parent.maxEpochs;
		targetError=parent.targetError;
		targetFPR=parent.targetFPR;
		targetFNR=parent.targetFNR;
		crossoverFpMult=parent.crossoverFpMult;

		sortAll=parent.sortAll;
		sort=parent.sort;
		sortInThread=parent.sortInThread;
		shuffleSubset=parent.shuffleSubset;
		allowMTSort=parent.allowMTSort;
		
		alphaZero=parent.alphaZero;
		alphaMult=parent.alphaMult;
		alphaMult2=parent.alphaMult2;
		peakAlphaEpoch=parent.peakAlphaEpoch;
		
		alphaIncrease=parent.alphaIncrease;
		alphaEpochs=parent.alphaEpochs;
		alphaDropoff=parent.alphaDropoff;
		
		annealStrength0=parent.annealStrength0;
		annealProb=parent.annealProb;
		annealMult2=parent.annealMult2;
		annealDropoff0=parent.annealDropoff0;
		
		minAnnealEpoch=parent.minAnnealEpoch;
		maxAnnealEpoch=parent.maxAnnealEpoch;

		fractionPerEpoch0=parent.fractionPerEpoch0;
		fractionPerEpoch2=parent.fractionPerEpoch2;
		fpeStart=parent.fpeStart;
		
		positiveTriage=parent.positiveTriage;
		negativeTriage=parent.negativeTriage;
		startTriage=parent.startTriage;
		
		printStatus=parent.printStatus;
		printInterval=parent.printInterval;
		
		dumpRate=parent.dumpRate;
		dumpEpoch=parent.dumpEpoch;
		minWeightEpoch=parent.minWeightEpoch;
		minWeightEpochInverse=1f/minWeightEpoch;
		
		subnets=new CellNet[jobsPerEpoch];
		for(int i=0; i<subnets.length; i++){
			subnets[i]=net0.copy(false);
		}
		
		setLock=parent.useSetLock ? new ReentrantReadWriteLock() : null;
		flist=new FloatList(Tools.max(256, parent.data.maxSubsetSize()));
	}
	
	@Override
	public void run() {
		if(setLock!=null) {
//			System.err.println("Initial Lock");
			setLock.writeLock().lock();
		}
		data=(parent.networksPerCycle==1 ? parent.data : parent.data.copy());
		validateSet=(parent.validateSet==null ? null : 
			(parent.networksPerCycle==1 ? parent.validateSet : parent.validateSet.copy()));
		
		alpha=alphaZero;
		annealStrength=annealStrength0;
		int annealEpochs=Tools.min(maxEpochs, maxAnnealEpoch)-minAnnealEpoch;
		annealDropoff=1.0/Math.pow(annealMult2, 1.0/annealEpochs);
//		fractionPerEpoch=fractionPerEpoch0;
		
		if(launchInThread) {new LaunchThread().start();}
		
		runEpochs();
		
		parent.networkQueue.add(net0);///TODO: Ensure net's stats are correct
		if(launchInThread) {launchQueue.add(JobData.POISON);}
		if(setLock!=null) {
//			System.err.println("Final Unlock");
			setLock.writeLock().unlock();
		}
	}

	private int runEpochs() {
		while(currentEpoch<maxEpochs && (bestErrorRate>targetError)) {
			mprof.reset();
			currentEpoch++;
			
			if(currentEpoch==dumpEpoch && dumpRate>0) {
				dump(data);
			}
			
			if(training) {
				assert(jobResultsQueue.size()==0);
				assert(parent.networksPerCycle>1 || workerQueue.size()==0);
				runTrainingInterval();
				assert(jobResultsQueue.size()==0);
				assert(parent.networksPerCycle>1 || workerQueue.size()==0);
			}
			
			final boolean print=handlePrintInterval();
			validateThisEpoch=print; //TODO: can make this more frequent, esp. when not printing
			
			boolean validated=false;
			if(validateThisEpoch | print){
				assert(jobResultsQueue.size()==0);
				assert(parent.networksPerCycle>1 || workerQueue.size()==0);
				runTestingInterval(validateSet.samples);
				validated=true;
				assert(jobResultsQueue.size()==0);
				assert(parent.networksPerCycle>1 || workerQueue.size()==0);
//				assert(false) : validateSet.samples.length;
			}
			
			if(validated) {
				calcNetStats(!training || Trainer.setCutoffForEvaluation);
				parent.compareWithBest(net0.copy(false));
			}
			
			mprof.log();//11: 11078/10597
			//System.err.println("M finished epoch "+currentEpoch);
		}
		return currentEpoch;
	}
	
	@Deprecated
	private void dump_old(SampleSet data){
//		System.err.println("Before: samples="+data.samples.length);
//		System.err.println("Before: subsets="+parent.subsets);
//		System.err.println("Before: fpeMult="+fpeMult);
//		System.err.println("Before: subslen="+data.currentSubset(currentEpoch).samples.length);
//		System.err.println("Before: fpe=    "+calcFractionPerEpoch());
//		System.err.println("Before: active ="+(int)(data.currentSubset(currentEpoch).samples.length*calcFractionPerEpoch()));
		
		final float retainFraction=(1-dumpRate);//Fraction completely retained
		final float retainFraction2=(parent.partialDumpFraction<1 ? 1-parent.partialDumpFraction*dumpRate : retainFraction);//Total fraction retained, including the partials
		runTestingInterval(data.samples);
		ArrayList<Sample> plist=new ArrayList<Sample>();
		ArrayList<Sample> nlist=new ArrayList<Sample>();
		
//		System.err.println("len="+data.samples.length+", ret="+retainFraction+", +ret2="+retainFraction2);
		
		for(Sample s : data.samples) {
			s.setPivot();//Necessary because the assertion failed once.  Usually works, though.
			assert(s.checkPivot()) : s.pivot+", "+s.calcPivot(); //TODO: Slow
			if(s.positive) {plist.add(s);}
			else {nlist.add(s);}
		}
//		System.err.println(plist.get(0).pivot+", "+plist.get(0).id);
//		System.err.println(nlist.get(0).pivot+", "+nlist.get(0).id);
		Collections.sort(plist);
		Collections.sort(nlist);
//		System.err.println(plist.get(0).pivot+", "+plist.get(0).id);
//		System.err.println(nlist.get(0).pivot+", "+nlist.get(0).id);
		final int pcount=(int)Math.ceil(plist.size()*retainFraction);
		final int ncount=(int)Math.ceil(nlist.size()*retainFraction);
		ArrayList<Sample> list=new ArrayList<Sample>(parent.partialDumpFraction<1 ? 
				data.samples.length : pcount+ncount);
		for(int i=0; i<pcount; i++){
			list.add(plist.get(i));
			assert(i==0 || plist.get(i).pivot<=plist.get(i-1).pivot);
		}
//		System.err.println("len="+list.size());
		
		//TODO:
		//It would be optimal to ensure the widest diversity of retained vectors, rather than discarding randomly.
		//It would also be prudent to retain relatively more high-error samples and fewer low-error samples. 
		if(parent.partialDumpFraction<1) {
			float x=0;
			final float y=1-parent.partialDumpFraction;
			for(int i=pcount; i<plist.size(); i+=1, x+=y){//Retain only some elements for the low-error samples
				if(x>=1){
					list.add(plist.get(i));
					x-=1;
				}
			}
		}
//		System.err.println("len="+list.size());
		for(int i=0; i<ncount; i++){
			list.add(nlist.get(i));
			assert(i==0 || nlist.get(i).pivot<=nlist.get(i-1).pivot);
		}
//		System.err.println("len="+list.size());
		if(parent.partialDumpFraction<1) {
			float x=0;
			final float y=1-parent.partialDumpFraction;
			for(int i=ncount; i<nlist.size(); i+=1, x+=y){//Retain only some element for the low-error samples
				if(x>=1){
					list.add(nlist.get(i));
					x-=1;
				}
			}
		}
//		System.err.println("len="+list.size());
		Collections.shuffle(list, new Random(SampleSet.shuffleSeed+1));
		data.samples=list.toArray(new Sample[0]);
		data.samplesSortedByResult=data.samples.clone();
		data.numPositive=pcount;
		data.numNegative=ncount;
		
		
		int subsets;
		boolean shrinkSubsets=parent.shrinkSubsets;
		//Note: shrinkSubsets is hard-coded as TRUE because it works better
		if(!shrinkSubsets){//This method of reducing subsets did not improve speed much.
			final int setsize=parent.setsize;
			subsets=(int)Math.ceil(parent.subsets*retainFraction2);
			if(setsize>0) {
				assert(setsize>=100) : "Setsize should be at least 100";
				subsets=Tools.max(1, data.samples.length/setsize);
				//			System.err.println("Data was organized into "+subsets+(subsets==1 ? " set." : " sets."));
			}
			subsets=Tools.mid(1, subsets, data.samples.length);
			fpeMult=1.0f;
		}else{//This method makes subsets smaller for less sorting, but also does not improve speed much (~10%).  Messes up convergence though.
			subsets=parent.subsets;
			fpeMult=1f/retainFraction2;
		}
		data.makeSubsets(subsets);
		
//		System.err.println("retainFraction2="+retainFraction2);
//		System.err.println("After:  samples="+data.samples.length);
//		System.err.println("After:  subsets="+subsets);
//		System.err.println("After:  fpeMult="+fpeMult);
//		System.err.println("After:  subslen="+data.currentSubset(currentEpoch).samples.length);
//		System.err.println("After:  fpe=    "+calcFractionPerEpoch());
//		System.err.println("After:  active ="+(int)(data.currentSubset(currentEpoch).samples.length*calcFractionPerEpoch()));

	}
	
	private void dump(SampleSet data){
		final float retainFraction=(1-dumpRate);//Fraction completely retained
		final float retainFraction2=(parent.partialDumpFraction<1 ? 1-parent.partialDumpFraction*dumpRate : retainFraction);//Total fraction retained, including the partials
		runTestingInterval(data.samples);
		ArrayList<Sample> plist=new ArrayList<Sample>();
		ArrayList<Sample> nlist=new ArrayList<Sample>();
		
//		System.err.println("len="+data.samples.length+", ret="+retainFraction+", +ret2="+retainFraction2);
		
		for(Sample s : data.samples) {
			s.setPivot();//Necessary because the assertion failed once.  Usually works, though.
			assert(s.checkPivot()) : s.pivot+", "+s.calcPivot(); //TODO: Slow
			if(s.positive) {plist.add(s);}
			else {nlist.add(s);}
		}
//		
		
		final int minRetainCount=(int)Math.ceil(Tools.max(plist.size(), nlist.size())*retainFraction);
		final int pcount=Tools.mid(minRetainCount, (int)Math.ceil(plist.size()*retainFraction), plist.size());
		final int ncount=Tools.mid(minRetainCount, (int)Math.ceil(nlist.size()*retainFraction), nlist.size());
		ArrayList<Sample> list=new ArrayList<Sample>(parent.partialDumpFraction<1 ? 
				data.samples.length : pcount+ncount);
//		System.err.println("samples="+data.samples.length+
//				", pcount="+pcount+"/"+plist.size()+", ncount="+ncount+"/"+nlist.size());

		dumpList(plist, list, pcount);
		dumpList(nlist, list, ncount);
		
//		System.err.println("len="+list.size());
		assert(data.samples.length>=list.size());
//		System.err.println(data.samples.length+", "+list.size()+", "+pcount+", "+ncount);
		final float sampleRatio=data.samples.length/(float)Tools.max(1, list.size());
		Collections.shuffle(list, new Random(SampleSet.shuffleSeed+1));
		data.samples=list.toArray(new Sample[0]);
//		System.err.println("samples="+data.samples.length);
		data.samplesSortedByResult=data.samples.clone();
		data.numPositive=pcount;
		data.numNegative=ncount;
		
		
		int subsets;
		boolean shrinkSubsets=parent.shrinkSubsets;
		//Note: shrinkSubsets is hard-coded as TRUE because it works better
		if(!shrinkSubsets){//This method of reducing subsets did not improve speed much.
			final int setsize=parent.setsize;
			subsets=(int)Math.ceil(parent.subsets*retainFraction2);
			if(setsize>0) {
				assert(setsize>=100) : "Setsize should be at least 100";
				subsets=Tools.max(1, data.samples.length/setsize);
				//			System.err.println("Data was organized into "+subsets+(subsets==1 ? " set." : " sets."));
			}
			subsets=Tools.mid(1, subsets, data.samples.length);
			fpeMult=1.0f;
		}else{//This method makes subsets smaller for less sorting, but also does not improve speed much (~10%).  Messes up convergence though.
			subsets=parent.subsets;
			fpeMult=sampleRatio;//1f/retainFraction2;
			assert(fpeMult>=1) : fpeMult;
//			System.err.println(fpeMult);
//			System.err.println(1f/retainFraction2);
		}
		data.makeSubsets(subsets);
		
//		System.err.println("retainFraction2="+retainFraction2);
//		System.err.println("After:  samples="+data.samples.length);
//		System.err.println("After:  subsets="+subsets);
//		System.err.println("After:  fpeMult="+fpeMult);
//		System.err.println("After:  subslen="+data.currentSubset(currentEpoch).samples.length);
//		System.err.println("After:  fpe=    "+calcFractionPerEpoch());
//		System.err.println("After:  active ="+(int)(data.currentSubset(currentEpoch).samples.length*calcFractionPerEpoch()));

	}
	
	private void dumpList(ArrayList<Sample> inList, ArrayList<Sample> outList, int retainCount) {
		Collections.sort(inList);
		for(int i=0; i<retainCount; i++){
			outList.add(inList.get(i));
			assert(i==0 || inList.get(i).pivot<=inList.get(i-1).pivot);
		}
		
		if(parent.partialDumpFraction<1) {
			float x=0;
			final float y=1-parent.partialDumpFraction;
			for(int i=retainCount; i<inList.size(); i+=1, x+=y){//Retain only some elements for the low-error samples
				if(x>=1){
					outList.add(inList.get(i));
					x-=1;
				}
			}
		}
	}
	
	private void runTrainingInterval() {
//		synchronized(LOCK) {
		
		assert(training);
		clearStats();
		net0.clear();
		mprof.log();//0: 614 / 564

		selectTrainingSubset();
		mprof.log();//1: 197101 / 9032

		assert(samplesThisEpoch>0) : samplesThisEpoch+", "+currentSamples.length;

		assert(jobResultsQueue.size()==0);
		assert(parent.networksPerCycle>1 || workerQueue.size()==0);
		final float weightMult=weightMult();
		
		int jobs=launchJobs(net0, currentSamples, samplesThisEpoch, training, weightMult, sort); 
		//Takes longer with sortInThread (or higher fpe) because more samples are sent
		mprof.log();//2: 90239 / 140357
//		}
		
		gatherResults(net0, jobResultsQueue, training, jobs);
		lock();
		mprof.log();//3: 561312/661228
		//System.err.println("M done waiting for threads.");
		
		synchronized(net0) {
			//System.err.println("M checking epochs.");
			assert(jobResultsQueue.size()==0);
			assert(parent.networksPerCycle>1 || workerQueue.size()==0);

			//System.err.println("M gathering.");
			mergeStats(samplesThisEpoch);
			//		errorRate=weightedErrorRate;
			mprof.log();//4: 154/143
			
			net0.applyChanges(samplesThisEpoch, (float)alpha);
			mprof.log();//5: 2356/2134
			anneal();
			mprof.log();//6: 2635/2623
			adjustAlpha();
			triage();
			mprof.log();//7: 4998/5798
		}
	}
	
	private final float weightMult() {
		if(currentEpoch>=minWeightEpoch){return 1.0f;}
		return currentEpoch*minWeightEpochInverse;
	}
	
	private void runTestingInterval(Sample[] set) {
		final int vlines=Tools.min(parent.maxLinesV, set.length);
//		synchronized(LOCK) {
			clearStats();
			net0.clear();
			int jobs=launchJobs(net0, set, vlines, false, 1f, false);
			mprof.log();//8: 1738/1709
//		}
		
		gatherResults(null, jobResultsQueue, false, jobs);
		lock();
		//System.err.println("M done waiting for threads.");

//		synchronized(LOCK) {
			mprof.log();//9: 23373/23901
			//System.err.println("M checking epochs.");
			assert(jobResultsQueue.size()==0);
			assert(parent.networksPerCycle>1 || workerQueue.size()==0);

			//System.err.println("M gathering.");
			mergeStats(vlines);
			//		errorRate=weightedErrorRate;
			mprof.log();//10: 0
//		}
	}
	
	void lock() {
//		System.err.println("Lock");
		if(setLock!=null) {
			setLock.readLock().unlock();
			setLock.writeLock().lock();
		}
	}
	
	void unlock() {
//		System.err.println("Unlock");
		if(setLock!=null) {
			setLock.writeLock().unlock();
			setLock.readLock().lock();
		}
	}
	
	/*--------------------------------------------------------------*/
	
	private void anneal() {
		if(currentEpoch>maxAnnealEpoch) {annealStrength=0;}
		else if(currentEpoch>=minAnnealEpoch && annealStrength>0 && 
				annealProb>0 && currentEpoch+1<maxEpochs) {
			if(annealProb>randyAnneal.nextFloat()){
				net0.anneal((float)annealStrength, randyAnneal);
				//annealDropoff=annealDropoff*0.999f;
			}
			annealStrength=annealStrength*annealDropoff;

			if(annealDropoff0==annealDropoff && annealStrength*40<annealStrength0) {
				annealDropoff=(1-(1-annealDropoff)*0.25f);//Slow anneal dropoff
			}
		}
	}
	
	private void adjustAlpha() {
		if(currentEpoch<=peakAlphaEpoch){
			alpha+=alphaIncrease;
		}else {
			alpha*=alphaDropoff;
		}
	}
	
	private void triage() {//Do this AFTER processing the epoch
		if(currentEpoch>=startTriage && samplesThisEpoch==currentSamples.length) {
			currentSubset.triage(currentEpoch, startTriage, positiveTriage, negativeTriage);
		}
	}
	
	private class LaunchThread extends Thread{
		
		//Called by start()
		@Override
		public void run(){
			for(JobData job=getJob(); job!=JobData.POISON; job=getJob()) {
				launchJobsInner(job.immutableNet, job.set, job.maxSamples, job.epoch, job.alpha, 
						job.backprop, job.weightMult, job.sort);
			}
		}
		
		JobData getJob() {
			JobData job=null;
			while(job==null) {
				try {
					job=launchQueue.take();
				} catch (InterruptedException e) {
					e.printStackTrace();
				}
			}
			return job;
		}
			
	}
	
	private int launchJobs(CellNet net0, Sample[] set, int numSamples, 
			boolean backprop, float weightMult, boolean sort) {
		if(launchInThread) {
			JobData job=new JobData(net0, jobResultsQueue, currentEpoch, numSamples, alpha, 
					backprop, weightMult, sort, true, null, set, setLock, 0, 0);
			launchQueue.add(job);
			return jobsPerEpoch;
		}else {
			return launchJobsInner(net0, set, numSamples, currentEpoch, alpha, backprop, weightMult, sort);
		}
	}
	
	//Does not seem faster...
	private int launchJobsInner(CellNet net0, Sample[] set, int numSamples_, int epoch, double alpha, 
			boolean backprop, float weightMult, boolean sort) {
		if(setLock!=null) {return launchJobs_SetLock(net0, set, numSamples_, epoch, alpha, backprop, weightMult, sort);}
		//TODO: Eliminate this method if the above works
		
		
		//Note:  This is a little confusing because you may want to send more samples (samplesToSend)
		//than you actually want processed (numSamples) if sorting is being done per-thread.
		final int numSamples=Tools.min(numSamples_, set.length);
		final boolean sortFlag=sort && sortInThread && numSamples<set.length;
//		final float samplesPerThread=numSamples/(float)threads;
//		final int minSamplesPerThread=(int)samplesPerThread, maxSamplesPerThread=(int)Math.ceil(samplesPerThread);
		
		final int samplesToSend=(sortFlag ? set.length : numSamples);//This is the only difference
		final int listLen=(samplesToSend+jobsPerEpoch-1)/jobsPerEpoch;

		int sent=0;
		int jobs=0;
		final CellNet immutableNet=Trainer.copyNetInWorkerThread ||  Trainer.setNetInWorkerThread ? net0.copy(false) : null;
		for(int jid=0; jid<jobsPerEpoch; jid++){
			ArrayList<Sample> list=new ArrayList<Sample>(listLen);
			int idx=jid;
			while(idx<numSamples) {
				list.add(set[idx]);
				idx+=jobsPerEpoch;
			}
			final int toProcess=list.size();
			if(sortFlag) {
				while(idx<samplesToSend) {
					list.add(set[idx]);
					idx+=jobsPerEpoch;
				}
			}
//			final JobData job=new JobData(immutableNet, jobResultsQueue, epoch, toProcess, alpha, 
//					backprop, weightMult, sort, true, list, null, jid);
			
			final JobData job;
			if(Trainer.copyNetInWorkerThread){
				job=new JobData(immutableNet, jobResultsQueue, epoch, toProcess, alpha, 
						backprop, weightMult, sort, true, list, null, setLock, jid, jobsPerEpoch);
			}else{
				if(Trainer.setNetInWorkerThread) {
					job=new JobData(Trainer.setNetInWorkerThread ? immutableNet : null, jobResultsQueue, epoch, toProcess, alpha, 
							backprop, weightMult, sort, false, list, null, setLock, jid, jobsPerEpoch);
				}else{
					synchronized(net0) {
						synchronized(subnets[jid]) {
							subnets[jid].setFrom(net0, false);
						}
					}
					job=new JobData(null, jobResultsQueue, epoch, toProcess, alpha, 
							backprop, weightMult, sort, false, list, null, setLock, jid, jobsPerEpoch);
				}
				job.mutableNet=subnets[jid];
			}
			jobs++;
//			System.err.println(job);
			sent+=list.size();
			workerQueue.add(job);
		}
		
		
		assert((sent==numSamples && !sort) || (sent==samplesToSend && sort)) : 
			"sort="+sort+", sent="+sent+", samples="+numSamples+", samples_="+numSamples_+", "+
			"toSend="+samplesToSend+", setlen="+set.length+", jobs="+jobsPerEpoch+", listlen="+listLen;
		
//		if(sortFlag & shuffleSubset && ((epoch&7)==3)) {
//			currentSubset.shuffle();
//		}
		return jobs;
	}
	
	private int launchJobs_SetLock(CellNet net0, Sample[] set, int numSamples_, int epoch, double alpha, 
			boolean backprop, float weightMult, boolean sort) {
		
		final int numSamples=Tools.min(numSamples_, set.length);

//		assert(!sort);
		int sent=0;
		int jobs=0;
		
		//This does not seem to change anything...
//		final CellNet immutableNet=Trainer.copyNetInWorkerThread ||  Trainer.setNetInWorkerThread ? net0.copy(false) : null;
		final CellNet immutableNet=Trainer.copyNetInWorkerThread ||  Trainer.setNetInWorkerThread ? net00.setFrom(net0, false) : null;
		unlock();
		for(int jid=0; jid<jobsPerEpoch; jid++){
			
			final int toProcess=(numSamples-jid+jobsPerEpoch-1)/jobsPerEpoch;//I think this is right
			final JobData job;
			if(Trainer.copyNetInWorkerThread){
				job=new JobData(immutableNet, jobResultsQueue, epoch, numSamples, alpha, 
						backprop, weightMult, false, true, null, set, setLock, jid, jobsPerEpoch);
			}else{
				if(Trainer.setNetInWorkerThread) {
					job=new JobData(Trainer.setNetInWorkerThread ? immutableNet : null, jobResultsQueue, epoch, numSamples, alpha, 
							backprop, weightMult, false, false, null, set, setLock, jid, jobsPerEpoch);
				}else{
					synchronized(net0) {
						synchronized(subnets[jid]) {
							subnets[jid].setFrom(net0, false);
						}
					}
					job=new JobData(null, jobResultsQueue, epoch, numSamples, alpha, 
							backprop, weightMult, false, false, null, set, setLock, jid, jobsPerEpoch);
				}
				job.mutableNet=subnets[jid];
			}
			jobs++;
			sent+=toProcess;
			workerQueue.add(job);
		}
		
		assert(sent==numSamples && jobs==jobsPerEpoch) : 
			"sort="+sort+", sent="+sent+", samples="+numSamples+", samples_="+numSamples_+", "+
			", setlen="+set.length+", jobs="+jobsPerEpoch;
		return jobs;
	}
	
	private void gatherResults(final CellNet net0, final ArrayBlockingQueue<JobResults> mq, 
			final boolean accumulate, final int numJobs) {
		if(orderedJobs) {
			gatherResultsOrdered(net0, mq, accumulate, numJobs);
		}else {
			gatherResultsDisordered(net0, mq, accumulate, numJobs);
		}
	}
	
	private void gatherResultsDisordered(final CellNet net0, final ArrayBlockingQueue<JobResults> mq, 
			final boolean accumulate, final int numJobs) {
		//System.err.println("M waiting for threads.");
		for(int i=0; i<numJobs; i++) {
			JobResults job=null;
			while(job==null) {
				try {job=mq.take();} 
				catch (InterruptedException e){e.printStackTrace();}
			}
			assert(job.epoch==currentEpoch) : job.epoch+", "+currentEpoch+", "+job.tid;
			gatherStats(job);
			if(accumulate && job.net!=null) {net0.accumulate(job.net);}
			else {assert(!accumulate || jobsPerEpoch>samplesThisEpoch);}
		}
	}
	
	private void gatherResultsOrdered(final CellNet net0, final ArrayBlockingQueue<JobResults> mq, 
			final boolean accumulate, final int numJobs) {
		JobResults[] results=new JobResults[numJobs];
		//System.err.println("M waiting for threads.");
		
		int next=0;
		for(int i=0; i<numJobs; i++) {
			{//Get a job
				JobResults job=null;
				while(job==null) {
					try {job=mq.take();} 
					catch (InterruptedException e){e.printStackTrace();}
				}
				assert(job.epoch==currentEpoch) : job.epoch+", "+currentEpoch+", "+job.tid;
				results[job.jid]=job;
			}
			
			//Process as many consecutive jobs as are available
			//Can be moved outside of the loop to ensure read-write exclusion on net0, if needed
			while(next<numJobs && results[next]!=null){//This loop actually seems to take very little time
				final JobResults job=results[next];
				gatherStats(job);
				if(accumulate && job.net!=null) {net0.accumulate(job.net);}
				else {assert(!accumulate || jobsPerEpoch>samplesThisEpoch);}
				next++;
			}
		}
	}
	
	private boolean handlePrintInterval() {
		boolean print=!training || currentEpoch==maxEpochs;
		if(/*printStatus && */currentEpoch>=nextPrintEpoch) {
			print=true;
			if(currentEpoch<printInterval) {
				nextPrintEpoch=nextPrintEpoch*4;
				if(nextPrintEpoch>printInterval) {
					nextPrintEpoch=printInterval;
				}
			}
			if(currentEpoch>=nextPrintEpoch) {
				nextPrintEpoch+=printInterval;
			}
			nextPrintEpoch=Tools.min(nextPrintEpoch, maxEpochs);
		}
		return print;
	}
	
	float calcFractionPerEpoch() {
		if(currentEpoch<fpeStart){
			float f=fractionPerEpoch0+(1-(currentEpoch/(float)fpeStart))*(1-fractionPerEpoch0);
			assert(f<=1 && f>=fractionPerEpoch0) : f+", "+fractionPerEpoch0+", "+currentEpoch+", "+fpeStart;
			return f;
		}
		
		final int start=Tools.mid(fpeStart, 0, maxEpochs);
		final int fpeEpochs=maxEpochs-start;
		final int epochsSinceStart=currentEpoch-start;
		final float incr=(fractionPerEpoch2-fractionPerEpoch0)/fpeEpochs;
		float fractionPerEpoch=(fpeEpochs<1 ? fractionPerEpoch0 : 
			Tools.min(1, (fractionPerEpoch0+incr*(epochsSinceStart))));
		assert(Tools.mid(fractionPerEpoch2, fractionPerEpoch0, fractionPerEpoch)==fractionPerEpoch) : 
			"start="+start+", current="+currentEpoch+", fpeEpochs="+fpeEpochs+", epochsSinceStart="+
			epochsSinceStart+", incr="+incr+",\n fractionPerEpoch0="+fractionPerEpoch0+
			", fractionPerEpoch2="+fractionPerEpoch2+
			",\n fractionPerEpoch="+fractionPerEpoch;
		fractionPerEpoch*=fpeMult;
		return fractionPerEpoch;
	}
	
	//TODO: Use calcFractionPerEpoch instead of recalculating
	int calcSamplesThisEpoch(Subset currentSubset) {
		final int len=currentSubset.samples.length;
		if(currentEpoch>=currentSubset.nextFullPassEpoch) {//This should really go outside the function.
			currentSubset.nextFullPassEpoch=currentEpoch+SampleSet.subsetInterval;
			return len;
		}
		if(currentEpoch<fpeStart){
			float f=fractionPerEpoch0+(1-(currentEpoch/(float)fpeStart))*(1-fractionPerEpoch0);
			assert(f<=1 && f>=fractionPerEpoch0) : f+", "+fractionPerEpoch0+", "+currentEpoch+", "+fpeStart;
			return (int)Tools.min(len, Tools.max(4, jobsPerEpoch, len*f));
		}
		
		final int start=Tools.mid(fpeStart, 0, maxEpochs);
		final int fpeEpochs=maxEpochs-start;
		final int epochsSinceStart=currentEpoch-start;
		final float incr=(fractionPerEpoch2-fractionPerEpoch0)/fpeEpochs;
		float fractionPerEpoch=(fpeEpochs<1 ? fractionPerEpoch0 : 
			Tools.min(1, (fractionPerEpoch0+incr*(epochsSinceStart))));
		assert(Tools.mid(fractionPerEpoch2, fractionPerEpoch0, fractionPerEpoch)==fractionPerEpoch) : 
			"start="+start+", current="+currentEpoch+", fpeEpochs="+fpeEpochs+", epochsSinceStart="+
			epochsSinceStart+", incr="+incr+",\n fractionPerEpoch0="+fractionPerEpoch0+
			", fractionPerEpoch2="+fractionPerEpoch2+
			",\n fractionPerEpoch="+fractionPerEpoch;
		fractionPerEpoch*=fpeMult;
		final int ste=(int)Tools.min(currentSamples.length, Tools.max(4, jobsPerEpoch, len*fractionPerEpoch));
		return ste;
	}
	
	private void selectTrainingSubset() {
		currentSubset=data.currentSubset(currentEpoch);
		currentSamples=currentSubset.samples;
		samplesThisEpoch=calcSamplesThisEpoch(currentSubset);
		assert(setLock==null || setLock.writeLock().isHeldByCurrentThread());
		final int mod8=currentEpoch&7, mod64=currentEpoch&7;
		if(shuffleSubset && mod8==Trainer.SHUFFLEMOD) {
			currentSubset.shuffle();
			return;
		}else if(!sort || sortInThread) {
			return;
		}else if(mod64==5) {
			currentSubset.sortSamples(1f, allowMTSort);
		}else if(sortAll || mod8==5) {
//			currentSubset.sortSamples(1f, allowMTSort);
			currentSubset.sortSamples2(1f, samplesThisEpoch, allowMTSort, flist);
		}else if(mod8==1) {
			currentSubset.sortSamples2(fractionPerEpoch0*6, samplesThisEpoch, allowMTSort, flist);
		}else if(mod8==3 || mod8==7){
//			currentSubset.sortSamples(fractionPerEpoch0*3, allowMTSort);
			currentSubset.sortSamples2(fractionPerEpoch0*3, samplesThisEpoch, allowMTSort, flist);
		}
	}
	
	private void clearStats() {
		rawErrorSum=0;
		weightedErrorSum=0;
		tpSum=tnSum=fpSum=fnSum=0;
	}
	
	private void gatherStats(JobResults job) {
		rawErrorSum+=job.errorSum;
		weightedErrorSum+=job.weightedErrorSum;
		tpSum+=job.tpSum;
		tnSum+=job.tnSum;
		fpSum+=job.fpSum;
		fnSum+=job.fnSum;
	}
	
	private void mergeStats(int samples) {
		final int outputs=(data!=null ? data.numOutputs() : validateSet.numOutputs());
		final double invSamples=1.0/samples;
		final double invOutputs=1.0/outputs;
//		final double e1=net0.errorSum*invSamples;
//		final double we1=net0.weightedErrorSum*invSamples;
		
//		assert(false) : "TP="+tpSum+", TN="+tnSum+", FP="+fpSum+", FN="+fnSum+"; sum="+(tpSum+tnSum+fpSum+fnSum);
		fpRate=fpSum*invSamples*invOutputs;
		fnRate=fnSum*invSamples*invOutputs;
		tpRate=tpSum*invSamples*invOutputs;
		tnRate=tnSum*invSamples*invOutputs;
		final double e3=rawErrorSum*invSamples;
		final double we3=weightedErrorSum*invSamples;
		
//		assert!Double.isNaN(e3) : invSamples;

		rawErrorRate=e3;//Tools.max(e1, e3);//, e2);
		weightedErrorRate=we3;//Tools.max(we1, we3);//, e2);
		setNetStats(net0);
	}
	
	void calcNetStats(boolean retainOldCutoff) {
		
		SampleSet set=validateSet;
		if(validateThisEpoch){
			if(retainOldCutoff) {
				set.sortByValue();
				lastCutoff=net0.cutoff;
				fpRate=set.calcFPRFromCutoff(lastCutoff);
				fnRate=set.calcFNRFromCutoff(lastCutoff);
			}else if(crossoverFpMult>0) {
				set.sortByValue();
				lastCutoff=set.calcCutoffFromCrossover(crossoverFpMult);
				fpRate=set.calcFPRFromCutoff(lastCutoff);
				fnRate=set.calcFNRFromCutoff(lastCutoff);
			}else if(targetFPR>=0) {
				set.sortByValue();
				fpRate=targetFPR;
				fnRate=set.calcFNRFromFPR(targetFPR);
				lastCutoff=set.calcCutoffFromFPR(fpRate);
				fpRate=set.calcFPRFromCutoff(lastCutoff);
			}else if(targetFNR>=0) {
				set.sortByValue();
				fnRate=targetFNR;
				fpRate=set.calcFPRFromFNR(targetFNR);
				lastCutoff=set.calcCutoffFromFNR(fnRate);//TODO: Test this function
				fnRate=set.calcFNRFromCutoff(lastCutoff);
			}else{
				lastCutoff=Trainer.cutoffForEvaluation;
//				fpRate=validateSet.calcFPRFromCutoff(lastCutoff);
//				fnRate=validateSet.calcFNRFromCutoff(lastCutoff);
			}
			tpRate=(set.numPositive/(double)set.samples.length)-fnRate;
			tnRate=(set.numNegative/(double)set.samples.length)-fpRate;
		}else {
			//Not sure what to do here if retainOldCutoff=true
			lastCutoff=Trainer.cutoffForEvaluation;
		}
		
//		assert(false) : crossoverFpMult+", "+lastCutoff+", "+fpRate+", "+fnRate+", "+targetFPR+", "+set.numPositive+", "+set.numNegative;
//		assert(fnRate<1) : fnRate+", "+targetFNR+", "+targetFPR;//This was added because one time I forgot to include positive samples
		setNetStats(net0);
	}
	
	private void setNetStats(CellNet net) {
		net.fpRate=(float) fpRate;
		net.fnRate=(float) fnRate;
		net.tpRate=(float) tpRate;
		net.tnRate=(float) tnRate;
		net.errorRate=(float) rawErrorRate;
		net.weightedErrorRate=(float) weightedErrorRate;
		net.alpha=(float) alpha;
		net.annealStrength=(float) annealStrength;
		net.epoch=currentEpoch;
		if(lastCutoff!=999) {net.setCutoff((float)lastCutoff);}
	}
	
	/*--------------------------------------------------------------*/
	
	public final boolean success(){return !errorState;}
	
	/*--------------------------------------------------------------*/
	/*----------------        Common Fields         ----------------*/
	/*--------------------------------------------------------------*/
	
	private final Trainer parent;

	private final CellNet net0;//Basis network
	private final CellNet net00;//A copy
	private final CellNet[] subnets; //Copies for worker threads (if they don't make copies themselves)

	/*--------------------------------------------------------------*/
	
	private SampleSet data;
	private SampleSet validateSet;
	
	private final FloatList flist;
	private Subset currentSubset;
	private Sample[] currentSamples;
	
	private final ReentrantReadWriteLock setLock;

	/*--------------------------------------------------------------*/
	
//	private final long annealSeed;
	private final int jobsPerEpoch;
//	private final int jobsPerBatch; //TODO: Change threads to this.
	
	private final boolean orderedJobs; //Without ordered, very very slight nondeterminism.
	private final ArrayBlockingQueue<JobResults> jobResultsQueue;
	private final ArrayBlockingQueue<JobData> workerQueue;
	private final ArrayBlockingQueue<JobData> launchQueue;
	final Profiler mprof=new Profiler("M", 13);
	
	private final boolean training;
	
	/*--------------------------------------------------------------*/
	
	final int maxEpochs;
	final float targetError;
	final float targetFPR;
	final float targetFNR;
	final float crossoverFpMult;
	
	/*--------------------------------------------------------------*/

	final boolean sortAll;
	final boolean sort;
	final boolean sortInThread;
	final boolean shuffleSubset; //Only if sortInThread is true
	final boolean launchInThread;
	final boolean allowMTSort;
	
	/*--------------------------------------------------------------*/
	
	final double alphaZero;
	final double alphaMult;
	final double alphaMult2;
	final int peakAlphaEpoch;
	
	final double alphaIncrease;
	final int alphaEpochs;
	final double alphaDropoff;
	
	final float annealStrength0;
	final float annealProb;
	final float annealMult2;
	final double annealDropoff0;
	
	final int minAnnealEpoch;
	final int maxAnnealEpoch;

	private final float fractionPerEpoch0;
	private final float fractionPerEpoch2;
//	private float fractionPerEpoch;
	private float fpeMult=1.0f;
	private final int fpeStart;
	
	private final float positiveTriage;
	private final float negativeTriage;
	private final int startTriage;
	
	private final boolean printStatus;
	private final int printInterval;
	
	private final float dumpRate;
	private final int dumpEpoch;

	private final int minWeightEpoch;
	private final float minWeightEpochInverse;
	
	/*--------------------------------------------------------------*/
	
	float bestErrorRate=999;
	float bestFNR=999;

	double rawErrorSum=0;
	double weightedErrorSum=0;
	long tpSum=0, tnSum=0, fpSum=0, fnSum=0;

	double rawErrorRate=999f;
	double weightedErrorRate=999f;
	
	double fpRate=0, fnRate=0, tpRate, tnRate;
	double lastCutoff=999f;
	
	double annealStrength;
	double annealDropoff;
	double alpha;
	
	/*--------------------------------------------------------------*/
	
	private int nextPrintEpoch=1;
	
	private int samplesThisEpoch=-1;
	private boolean validateThisEpoch=false;
	private int currentEpoch=0;
	
	/*--------------------------------------------------------------*/
	/*----------------         Final Fields         ----------------*/
	/*--------------------------------------------------------------*/
	
	final Random randyAnneal;
	
//	private static final Sample[] poisonSamples=new Sample[0];
	
	/*--------------------------------------------------------------*/
	/*----------------        Common Fields         ----------------*/
	/*--------------------------------------------------------------*/
	
	/** Print status messages to this output stream */
	private PrintStream outstream=System.err;
	/** Print verbose messages */
	public static boolean verbose=false;
	/** True if an error was encountered */
	public boolean errorState=false;
	
}