1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
|
package ml;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import shared.Tools;
import structures.FloatList;
public class TrainerThread extends Thread {
public TrainerThread(Trainer parent_, CellNet net0_) {
parent=parent_;
net0=net0_;
net00=net0.copy(false);
randyAnneal=new Random(net00.seed);
jobsPerEpoch=parent.jobsPerEpoch;
orderedJobs=parent.orderedJobs;
launchInThread=parent.launchInThread;
jobResultsQueue=new ArrayBlockingQueue<JobResults>(jobsPerEpoch);
workerQueue=parent.workerQueue;
launchQueue=(launchInThread ? new ArrayBlockingQueue<JobData>(2) : null);
training=parent.training;
maxEpochs=parent.maxEpochs;
targetError=parent.targetError;
targetFPR=parent.targetFPR;
targetFNR=parent.targetFNR;
crossoverFpMult=parent.crossoverFpMult;
sortAll=parent.sortAll;
sort=parent.sort;
sortInThread=parent.sortInThread;
shuffleSubset=parent.shuffleSubset;
allowMTSort=parent.allowMTSort;
alphaZero=parent.alphaZero;
alphaMult=parent.alphaMult;
alphaMult2=parent.alphaMult2;
peakAlphaEpoch=parent.peakAlphaEpoch;
alphaIncrease=parent.alphaIncrease;
alphaEpochs=parent.alphaEpochs;
alphaDropoff=parent.alphaDropoff;
annealStrength0=parent.annealStrength0;
annealProb=parent.annealProb;
annealMult2=parent.annealMult2;
annealDropoff0=parent.annealDropoff0;
minAnnealEpoch=parent.minAnnealEpoch;
maxAnnealEpoch=parent.maxAnnealEpoch;
fractionPerEpoch0=parent.fractionPerEpoch0;
fractionPerEpoch2=parent.fractionPerEpoch2;
fpeStart=parent.fpeStart;
positiveTriage=parent.positiveTriage;
negativeTriage=parent.negativeTriage;
startTriage=parent.startTriage;
printStatus=parent.printStatus;
printInterval=parent.printInterval;
dumpRate=parent.dumpRate;
dumpEpoch=parent.dumpEpoch;
minWeightEpoch=parent.minWeightEpoch;
minWeightEpochInverse=1f/minWeightEpoch;
subnets=new CellNet[jobsPerEpoch];
for(int i=0; i<subnets.length; i++){
subnets[i]=net0.copy(false);
}
setLock=parent.useSetLock ? new ReentrantReadWriteLock() : null;
flist=new FloatList(Tools.max(256, parent.data.maxSubsetSize()));
}
@Override
public void run() {
if(setLock!=null) {
// System.err.println("Initial Lock");
setLock.writeLock().lock();
}
data=(parent.networksPerCycle==1 ? parent.data : parent.data.copy());
validateSet=(parent.validateSet==null ? null :
(parent.networksPerCycle==1 ? parent.validateSet : parent.validateSet.copy()));
alpha=alphaZero;
annealStrength=annealStrength0;
int annealEpochs=Tools.min(maxEpochs, maxAnnealEpoch)-minAnnealEpoch;
annealDropoff=1.0/Math.pow(annealMult2, 1.0/annealEpochs);
// fractionPerEpoch=fractionPerEpoch0;
if(launchInThread) {new LaunchThread().start();}
runEpochs();
parent.networkQueue.add(net0);///TODO: Ensure net's stats are correct
if(launchInThread) {launchQueue.add(JobData.POISON);}
if(setLock!=null) {
// System.err.println("Final Unlock");
setLock.writeLock().unlock();
}
}
private int runEpochs() {
while(currentEpoch<maxEpochs && (bestErrorRate>targetError)) {
mprof.reset();
currentEpoch++;
if(currentEpoch==dumpEpoch && dumpRate>0) {
dump(data);
}
if(training) {
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
runTrainingInterval();
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
}
final boolean print=handlePrintInterval();
validateThisEpoch=print; //TODO: can make this more frequent, esp. when not printing
boolean validated=false;
if(validateThisEpoch | print){
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
runTestingInterval(validateSet.samples);
validated=true;
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
// assert(false) : validateSet.samples.length;
}
if(validated) {
calcNetStats(!training || Trainer.setCutoffForEvaluation);
parent.compareWithBest(net0.copy(false));
}
mprof.log();//11: 11078/10597
//System.err.println("M finished epoch "+currentEpoch);
}
return currentEpoch;
}
@Deprecated
private void dump_old(SampleSet data){
// System.err.println("Before: samples="+data.samples.length);
// System.err.println("Before: subsets="+parent.subsets);
// System.err.println("Before: fpeMult="+fpeMult);
// System.err.println("Before: subslen="+data.currentSubset(currentEpoch).samples.length);
// System.err.println("Before: fpe= "+calcFractionPerEpoch());
// System.err.println("Before: active ="+(int)(data.currentSubset(currentEpoch).samples.length*calcFractionPerEpoch()));
final float retainFraction=(1-dumpRate);//Fraction completely retained
final float retainFraction2=(parent.partialDumpFraction<1 ? 1-parent.partialDumpFraction*dumpRate : retainFraction);//Total fraction retained, including the partials
runTestingInterval(data.samples);
ArrayList<Sample> plist=new ArrayList<Sample>();
ArrayList<Sample> nlist=new ArrayList<Sample>();
// System.err.println("len="+data.samples.length+", ret="+retainFraction+", +ret2="+retainFraction2);
for(Sample s : data.samples) {
s.setPivot();//Necessary because the assertion failed once. Usually works, though.
assert(s.checkPivot()) : s.pivot+", "+s.calcPivot(); //TODO: Slow
if(s.positive) {plist.add(s);}
else {nlist.add(s);}
}
// System.err.println(plist.get(0).pivot+", "+plist.get(0).id);
// System.err.println(nlist.get(0).pivot+", "+nlist.get(0).id);
Collections.sort(plist);
Collections.sort(nlist);
// System.err.println(plist.get(0).pivot+", "+plist.get(0).id);
// System.err.println(nlist.get(0).pivot+", "+nlist.get(0).id);
final int pcount=(int)Math.ceil(plist.size()*retainFraction);
final int ncount=(int)Math.ceil(nlist.size()*retainFraction);
ArrayList<Sample> list=new ArrayList<Sample>(parent.partialDumpFraction<1 ?
data.samples.length : pcount+ncount);
for(int i=0; i<pcount; i++){
list.add(plist.get(i));
assert(i==0 || plist.get(i).pivot<=plist.get(i-1).pivot);
}
// System.err.println("len="+list.size());
//TODO:
//It would be optimal to ensure the widest diversity of retained vectors, rather than discarding randomly.
//It would also be prudent to retain relatively more high-error samples and fewer low-error samples.
if(parent.partialDumpFraction<1) {
float x=0;
final float y=1-parent.partialDumpFraction;
for(int i=pcount; i<plist.size(); i+=1, x+=y){//Retain only some elements for the low-error samples
if(x>=1){
list.add(plist.get(i));
x-=1;
}
}
}
// System.err.println("len="+list.size());
for(int i=0; i<ncount; i++){
list.add(nlist.get(i));
assert(i==0 || nlist.get(i).pivot<=nlist.get(i-1).pivot);
}
// System.err.println("len="+list.size());
if(parent.partialDumpFraction<1) {
float x=0;
final float y=1-parent.partialDumpFraction;
for(int i=ncount; i<nlist.size(); i+=1, x+=y){//Retain only some element for the low-error samples
if(x>=1){
list.add(nlist.get(i));
x-=1;
}
}
}
// System.err.println("len="+list.size());
Collections.shuffle(list, new Random(SampleSet.shuffleSeed+1));
data.samples=list.toArray(new Sample[0]);
data.samplesSortedByResult=data.samples.clone();
data.numPositive=pcount;
data.numNegative=ncount;
int subsets;
boolean shrinkSubsets=parent.shrinkSubsets;
//Note: shrinkSubsets is hard-coded as TRUE because it works better
if(!shrinkSubsets){//This method of reducing subsets did not improve speed much.
final int setsize=parent.setsize;
subsets=(int)Math.ceil(parent.subsets*retainFraction2);
if(setsize>0) {
assert(setsize>=100) : "Setsize should be at least 100";
subsets=Tools.max(1, data.samples.length/setsize);
// System.err.println("Data was organized into "+subsets+(subsets==1 ? " set." : " sets."));
}
subsets=Tools.mid(1, subsets, data.samples.length);
fpeMult=1.0f;
}else{//This method makes subsets smaller for less sorting, but also does not improve speed much (~10%). Messes up convergence though.
subsets=parent.subsets;
fpeMult=1f/retainFraction2;
}
data.makeSubsets(subsets);
// System.err.println("retainFraction2="+retainFraction2);
// System.err.println("After: samples="+data.samples.length);
// System.err.println("After: subsets="+subsets);
// System.err.println("After: fpeMult="+fpeMult);
// System.err.println("After: subslen="+data.currentSubset(currentEpoch).samples.length);
// System.err.println("After: fpe= "+calcFractionPerEpoch());
// System.err.println("After: active ="+(int)(data.currentSubset(currentEpoch).samples.length*calcFractionPerEpoch()));
}
private void dump(SampleSet data){
final float retainFraction=(1-dumpRate);//Fraction completely retained
final float retainFraction2=(parent.partialDumpFraction<1 ? 1-parent.partialDumpFraction*dumpRate : retainFraction);//Total fraction retained, including the partials
runTestingInterval(data.samples);
ArrayList<Sample> plist=new ArrayList<Sample>();
ArrayList<Sample> nlist=new ArrayList<Sample>();
// System.err.println("len="+data.samples.length+", ret="+retainFraction+", +ret2="+retainFraction2);
for(Sample s : data.samples) {
s.setPivot();//Necessary because the assertion failed once. Usually works, though.
assert(s.checkPivot()) : s.pivot+", "+s.calcPivot(); //TODO: Slow
if(s.positive) {plist.add(s);}
else {nlist.add(s);}
}
//
final int minRetainCount=(int)Math.ceil(Tools.max(plist.size(), nlist.size())*retainFraction);
final int pcount=Tools.mid(minRetainCount, (int)Math.ceil(plist.size()*retainFraction), plist.size());
final int ncount=Tools.mid(minRetainCount, (int)Math.ceil(nlist.size()*retainFraction), nlist.size());
ArrayList<Sample> list=new ArrayList<Sample>(parent.partialDumpFraction<1 ?
data.samples.length : pcount+ncount);
// System.err.println("samples="+data.samples.length+
// ", pcount="+pcount+"/"+plist.size()+", ncount="+ncount+"/"+nlist.size());
dumpList(plist, list, pcount);
dumpList(nlist, list, ncount);
// System.err.println("len="+list.size());
assert(data.samples.length>=list.size());
// System.err.println(data.samples.length+", "+list.size()+", "+pcount+", "+ncount);
final float sampleRatio=data.samples.length/(float)Tools.max(1, list.size());
Collections.shuffle(list, new Random(SampleSet.shuffleSeed+1));
data.samples=list.toArray(new Sample[0]);
// System.err.println("samples="+data.samples.length);
data.samplesSortedByResult=data.samples.clone();
data.numPositive=pcount;
data.numNegative=ncount;
int subsets;
boolean shrinkSubsets=parent.shrinkSubsets;
//Note: shrinkSubsets is hard-coded as TRUE because it works better
if(!shrinkSubsets){//This method of reducing subsets did not improve speed much.
final int setsize=parent.setsize;
subsets=(int)Math.ceil(parent.subsets*retainFraction2);
if(setsize>0) {
assert(setsize>=100) : "Setsize should be at least 100";
subsets=Tools.max(1, data.samples.length/setsize);
// System.err.println("Data was organized into "+subsets+(subsets==1 ? " set." : " sets."));
}
subsets=Tools.mid(1, subsets, data.samples.length);
fpeMult=1.0f;
}else{//This method makes subsets smaller for less sorting, but also does not improve speed much (~10%). Messes up convergence though.
subsets=parent.subsets;
fpeMult=sampleRatio;//1f/retainFraction2;
assert(fpeMult>=1) : fpeMult;
// System.err.println(fpeMult);
// System.err.println(1f/retainFraction2);
}
data.makeSubsets(subsets);
// System.err.println("retainFraction2="+retainFraction2);
// System.err.println("After: samples="+data.samples.length);
// System.err.println("After: subsets="+subsets);
// System.err.println("After: fpeMult="+fpeMult);
// System.err.println("After: subslen="+data.currentSubset(currentEpoch).samples.length);
// System.err.println("After: fpe= "+calcFractionPerEpoch());
// System.err.println("After: active ="+(int)(data.currentSubset(currentEpoch).samples.length*calcFractionPerEpoch()));
}
private void dumpList(ArrayList<Sample> inList, ArrayList<Sample> outList, int retainCount) {
Collections.sort(inList);
for(int i=0; i<retainCount; i++){
outList.add(inList.get(i));
assert(i==0 || inList.get(i).pivot<=inList.get(i-1).pivot);
}
if(parent.partialDumpFraction<1) {
float x=0;
final float y=1-parent.partialDumpFraction;
for(int i=retainCount; i<inList.size(); i+=1, x+=y){//Retain only some elements for the low-error samples
if(x>=1){
outList.add(inList.get(i));
x-=1;
}
}
}
}
private void runTrainingInterval() {
// synchronized(LOCK) {
assert(training);
clearStats();
net0.clear();
mprof.log();//0: 614 / 564
selectTrainingSubset();
mprof.log();//1: 197101 / 9032
assert(samplesThisEpoch>0) : samplesThisEpoch+", "+currentSamples.length;
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
final float weightMult=weightMult();
int jobs=launchJobs(net0, currentSamples, samplesThisEpoch, training, weightMult, sort);
//Takes longer with sortInThread (or higher fpe) because more samples are sent
mprof.log();//2: 90239 / 140357
// }
gatherResults(net0, jobResultsQueue, training, jobs);
lock();
mprof.log();//3: 561312/661228
//System.err.println("M done waiting for threads.");
synchronized(net0) {
//System.err.println("M checking epochs.");
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
//System.err.println("M gathering.");
mergeStats(samplesThisEpoch);
// errorRate=weightedErrorRate;
mprof.log();//4: 154/143
net0.applyChanges(samplesThisEpoch, (float)alpha);
mprof.log();//5: 2356/2134
anneal();
mprof.log();//6: 2635/2623
adjustAlpha();
triage();
mprof.log();//7: 4998/5798
}
}
private final float weightMult() {
if(currentEpoch>=minWeightEpoch){return 1.0f;}
return currentEpoch*minWeightEpochInverse;
}
private void runTestingInterval(Sample[] set) {
final int vlines=Tools.min(parent.maxLinesV, set.length);
// synchronized(LOCK) {
clearStats();
net0.clear();
int jobs=launchJobs(net0, set, vlines, false, 1f, false);
mprof.log();//8: 1738/1709
// }
gatherResults(null, jobResultsQueue, false, jobs);
lock();
//System.err.println("M done waiting for threads.");
// synchronized(LOCK) {
mprof.log();//9: 23373/23901
//System.err.println("M checking epochs.");
assert(jobResultsQueue.size()==0);
assert(parent.networksPerCycle>1 || workerQueue.size()==0);
//System.err.println("M gathering.");
mergeStats(vlines);
// errorRate=weightedErrorRate;
mprof.log();//10: 0
// }
}
void lock() {
// System.err.println("Lock");
if(setLock!=null) {
setLock.readLock().unlock();
setLock.writeLock().lock();
}
}
void unlock() {
// System.err.println("Unlock");
if(setLock!=null) {
setLock.writeLock().unlock();
setLock.readLock().lock();
}
}
/*--------------------------------------------------------------*/
private void anneal() {
if(currentEpoch>maxAnnealEpoch) {annealStrength=0;}
else if(currentEpoch>=minAnnealEpoch && annealStrength>0 &&
annealProb>0 && currentEpoch+1<maxEpochs) {
if(annealProb>randyAnneal.nextFloat()){
net0.anneal((float)annealStrength, randyAnneal);
//annealDropoff=annealDropoff*0.999f;
}
annealStrength=annealStrength*annealDropoff;
if(annealDropoff0==annealDropoff && annealStrength*40<annealStrength0) {
annealDropoff=(1-(1-annealDropoff)*0.25f);//Slow anneal dropoff
}
}
}
private void adjustAlpha() {
if(currentEpoch<=peakAlphaEpoch){
alpha+=alphaIncrease;
}else {
alpha*=alphaDropoff;
}
}
private void triage() {//Do this AFTER processing the epoch
if(currentEpoch>=startTriage && samplesThisEpoch==currentSamples.length) {
currentSubset.triage(currentEpoch, startTriage, positiveTriage, negativeTriage);
}
}
private class LaunchThread extends Thread{
//Called by start()
@Override
public void run(){
for(JobData job=getJob(); job!=JobData.POISON; job=getJob()) {
launchJobsInner(job.immutableNet, job.set, job.maxSamples, job.epoch, job.alpha,
job.backprop, job.weightMult, job.sort);
}
}
JobData getJob() {
JobData job=null;
while(job==null) {
try {
job=launchQueue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
return job;
}
}
private int launchJobs(CellNet net0, Sample[] set, int numSamples,
boolean backprop, float weightMult, boolean sort) {
if(launchInThread) {
JobData job=new JobData(net0, jobResultsQueue, currentEpoch, numSamples, alpha,
backprop, weightMult, sort, true, null, set, setLock, 0, 0);
launchQueue.add(job);
return jobsPerEpoch;
}else {
return launchJobsInner(net0, set, numSamples, currentEpoch, alpha, backprop, weightMult, sort);
}
}
//Does not seem faster...
private int launchJobsInner(CellNet net0, Sample[] set, int numSamples_, int epoch, double alpha,
boolean backprop, float weightMult, boolean sort) {
if(setLock!=null) {return launchJobs_SetLock(net0, set, numSamples_, epoch, alpha, backprop, weightMult, sort);}
//TODO: Eliminate this method if the above works
//Note: This is a little confusing because you may want to send more samples (samplesToSend)
//than you actually want processed (numSamples) if sorting is being done per-thread.
final int numSamples=Tools.min(numSamples_, set.length);
final boolean sortFlag=sort && sortInThread && numSamples<set.length;
// final float samplesPerThread=numSamples/(float)threads;
// final int minSamplesPerThread=(int)samplesPerThread, maxSamplesPerThread=(int)Math.ceil(samplesPerThread);
final int samplesToSend=(sortFlag ? set.length : numSamples);//This is the only difference
final int listLen=(samplesToSend+jobsPerEpoch-1)/jobsPerEpoch;
int sent=0;
int jobs=0;
final CellNet immutableNet=Trainer.copyNetInWorkerThread || Trainer.setNetInWorkerThread ? net0.copy(false) : null;
for(int jid=0; jid<jobsPerEpoch; jid++){
ArrayList<Sample> list=new ArrayList<Sample>(listLen);
int idx=jid;
while(idx<numSamples) {
list.add(set[idx]);
idx+=jobsPerEpoch;
}
final int toProcess=list.size();
if(sortFlag) {
while(idx<samplesToSend) {
list.add(set[idx]);
idx+=jobsPerEpoch;
}
}
// final JobData job=new JobData(immutableNet, jobResultsQueue, epoch, toProcess, alpha,
// backprop, weightMult, sort, true, list, null, jid);
final JobData job;
if(Trainer.copyNetInWorkerThread){
job=new JobData(immutableNet, jobResultsQueue, epoch, toProcess, alpha,
backprop, weightMult, sort, true, list, null, setLock, jid, jobsPerEpoch);
}else{
if(Trainer.setNetInWorkerThread) {
job=new JobData(Trainer.setNetInWorkerThread ? immutableNet : null, jobResultsQueue, epoch, toProcess, alpha,
backprop, weightMult, sort, false, list, null, setLock, jid, jobsPerEpoch);
}else{
synchronized(net0) {
synchronized(subnets[jid]) {
subnets[jid].setFrom(net0, false);
}
}
job=new JobData(null, jobResultsQueue, epoch, toProcess, alpha,
backprop, weightMult, sort, false, list, null, setLock, jid, jobsPerEpoch);
}
job.mutableNet=subnets[jid];
}
jobs++;
// System.err.println(job);
sent+=list.size();
workerQueue.add(job);
}
assert((sent==numSamples && !sort) || (sent==samplesToSend && sort)) :
"sort="+sort+", sent="+sent+", samples="+numSamples+", samples_="+numSamples_+", "+
"toSend="+samplesToSend+", setlen="+set.length+", jobs="+jobsPerEpoch+", listlen="+listLen;
// if(sortFlag & shuffleSubset && ((epoch&7)==3)) {
// currentSubset.shuffle();
// }
return jobs;
}
private int launchJobs_SetLock(CellNet net0, Sample[] set, int numSamples_, int epoch, double alpha,
boolean backprop, float weightMult, boolean sort) {
final int numSamples=Tools.min(numSamples_, set.length);
// assert(!sort);
int sent=0;
int jobs=0;
//This does not seem to change anything...
// final CellNet immutableNet=Trainer.copyNetInWorkerThread || Trainer.setNetInWorkerThread ? net0.copy(false) : null;
final CellNet immutableNet=Trainer.copyNetInWorkerThread || Trainer.setNetInWorkerThread ? net00.setFrom(net0, false) : null;
unlock();
for(int jid=0; jid<jobsPerEpoch; jid++){
final int toProcess=(numSamples-jid+jobsPerEpoch-1)/jobsPerEpoch;//I think this is right
final JobData job;
if(Trainer.copyNetInWorkerThread){
job=new JobData(immutableNet, jobResultsQueue, epoch, numSamples, alpha,
backprop, weightMult, false, true, null, set, setLock, jid, jobsPerEpoch);
}else{
if(Trainer.setNetInWorkerThread) {
job=new JobData(Trainer.setNetInWorkerThread ? immutableNet : null, jobResultsQueue, epoch, numSamples, alpha,
backprop, weightMult, false, false, null, set, setLock, jid, jobsPerEpoch);
}else{
synchronized(net0) {
synchronized(subnets[jid]) {
subnets[jid].setFrom(net0, false);
}
}
job=new JobData(null, jobResultsQueue, epoch, numSamples, alpha,
backprop, weightMult, false, false, null, set, setLock, jid, jobsPerEpoch);
}
job.mutableNet=subnets[jid];
}
jobs++;
sent+=toProcess;
workerQueue.add(job);
}
assert(sent==numSamples && jobs==jobsPerEpoch) :
"sort="+sort+", sent="+sent+", samples="+numSamples+", samples_="+numSamples_+", "+
", setlen="+set.length+", jobs="+jobsPerEpoch;
return jobs;
}
private void gatherResults(final CellNet net0, final ArrayBlockingQueue<JobResults> mq,
final boolean accumulate, final int numJobs) {
if(orderedJobs) {
gatherResultsOrdered(net0, mq, accumulate, numJobs);
}else {
gatherResultsDisordered(net0, mq, accumulate, numJobs);
}
}
private void gatherResultsDisordered(final CellNet net0, final ArrayBlockingQueue<JobResults> mq,
final boolean accumulate, final int numJobs) {
//System.err.println("M waiting for threads.");
for(int i=0; i<numJobs; i++) {
JobResults job=null;
while(job==null) {
try {job=mq.take();}
catch (InterruptedException e){e.printStackTrace();}
}
assert(job.epoch==currentEpoch) : job.epoch+", "+currentEpoch+", "+job.tid;
gatherStats(job);
if(accumulate && job.net!=null) {net0.accumulate(job.net);}
else {assert(!accumulate || jobsPerEpoch>samplesThisEpoch);}
}
}
private void gatherResultsOrdered(final CellNet net0, final ArrayBlockingQueue<JobResults> mq,
final boolean accumulate, final int numJobs) {
JobResults[] results=new JobResults[numJobs];
//System.err.println("M waiting for threads.");
int next=0;
for(int i=0; i<numJobs; i++) {
{//Get a job
JobResults job=null;
while(job==null) {
try {job=mq.take();}
catch (InterruptedException e){e.printStackTrace();}
}
assert(job.epoch==currentEpoch) : job.epoch+", "+currentEpoch+", "+job.tid;
results[job.jid]=job;
}
//Process as many consecutive jobs as are available
//Can be moved outside of the loop to ensure read-write exclusion on net0, if needed
while(next<numJobs && results[next]!=null){//This loop actually seems to take very little time
final JobResults job=results[next];
gatherStats(job);
if(accumulate && job.net!=null) {net0.accumulate(job.net);}
else {assert(!accumulate || jobsPerEpoch>samplesThisEpoch);}
next++;
}
}
}
private boolean handlePrintInterval() {
boolean print=!training || currentEpoch==maxEpochs;
if(/*printStatus && */currentEpoch>=nextPrintEpoch) {
print=true;
if(currentEpoch<printInterval) {
nextPrintEpoch=nextPrintEpoch*4;
if(nextPrintEpoch>printInterval) {
nextPrintEpoch=printInterval;
}
}
if(currentEpoch>=nextPrintEpoch) {
nextPrintEpoch+=printInterval;
}
nextPrintEpoch=Tools.min(nextPrintEpoch, maxEpochs);
}
return print;
}
float calcFractionPerEpoch() {
if(currentEpoch<fpeStart){
float f=fractionPerEpoch0+(1-(currentEpoch/(float)fpeStart))*(1-fractionPerEpoch0);
assert(f<=1 && f>=fractionPerEpoch0) : f+", "+fractionPerEpoch0+", "+currentEpoch+", "+fpeStart;
return f;
}
final int start=Tools.mid(fpeStart, 0, maxEpochs);
final int fpeEpochs=maxEpochs-start;
final int epochsSinceStart=currentEpoch-start;
final float incr=(fractionPerEpoch2-fractionPerEpoch0)/fpeEpochs;
float fractionPerEpoch=(fpeEpochs<1 ? fractionPerEpoch0 :
Tools.min(1, (fractionPerEpoch0+incr*(epochsSinceStart))));
assert(Tools.mid(fractionPerEpoch2, fractionPerEpoch0, fractionPerEpoch)==fractionPerEpoch) :
"start="+start+", current="+currentEpoch+", fpeEpochs="+fpeEpochs+", epochsSinceStart="+
epochsSinceStart+", incr="+incr+",\n fractionPerEpoch0="+fractionPerEpoch0+
", fractionPerEpoch2="+fractionPerEpoch2+
",\n fractionPerEpoch="+fractionPerEpoch;
fractionPerEpoch*=fpeMult;
return fractionPerEpoch;
}
//TODO: Use calcFractionPerEpoch instead of recalculating
int calcSamplesThisEpoch(Subset currentSubset) {
final int len=currentSubset.samples.length;
if(currentEpoch>=currentSubset.nextFullPassEpoch) {//This should really go outside the function.
currentSubset.nextFullPassEpoch=currentEpoch+SampleSet.subsetInterval;
return len;
}
if(currentEpoch<fpeStart){
float f=fractionPerEpoch0+(1-(currentEpoch/(float)fpeStart))*(1-fractionPerEpoch0);
assert(f<=1 && f>=fractionPerEpoch0) : f+", "+fractionPerEpoch0+", "+currentEpoch+", "+fpeStart;
return (int)Tools.min(len, Tools.max(4, jobsPerEpoch, len*f));
}
final int start=Tools.mid(fpeStart, 0, maxEpochs);
final int fpeEpochs=maxEpochs-start;
final int epochsSinceStart=currentEpoch-start;
final float incr=(fractionPerEpoch2-fractionPerEpoch0)/fpeEpochs;
float fractionPerEpoch=(fpeEpochs<1 ? fractionPerEpoch0 :
Tools.min(1, (fractionPerEpoch0+incr*(epochsSinceStart))));
assert(Tools.mid(fractionPerEpoch2, fractionPerEpoch0, fractionPerEpoch)==fractionPerEpoch) :
"start="+start+", current="+currentEpoch+", fpeEpochs="+fpeEpochs+", epochsSinceStart="+
epochsSinceStart+", incr="+incr+",\n fractionPerEpoch0="+fractionPerEpoch0+
", fractionPerEpoch2="+fractionPerEpoch2+
",\n fractionPerEpoch="+fractionPerEpoch;
fractionPerEpoch*=fpeMult;
final int ste=(int)Tools.min(currentSamples.length, Tools.max(4, jobsPerEpoch, len*fractionPerEpoch));
return ste;
}
private void selectTrainingSubset() {
currentSubset=data.currentSubset(currentEpoch);
currentSamples=currentSubset.samples;
samplesThisEpoch=calcSamplesThisEpoch(currentSubset);
assert(setLock==null || setLock.writeLock().isHeldByCurrentThread());
final int mod8=currentEpoch&7, mod64=currentEpoch&7;
if(shuffleSubset && mod8==Trainer.SHUFFLEMOD) {
currentSubset.shuffle();
return;
}else if(!sort || sortInThread) {
return;
}else if(mod64==5) {
currentSubset.sortSamples(1f, allowMTSort);
}else if(sortAll || mod8==5) {
// currentSubset.sortSamples(1f, allowMTSort);
currentSubset.sortSamples2(1f, samplesThisEpoch, allowMTSort, flist);
}else if(mod8==1) {
currentSubset.sortSamples2(fractionPerEpoch0*6, samplesThisEpoch, allowMTSort, flist);
}else if(mod8==3 || mod8==7){
// currentSubset.sortSamples(fractionPerEpoch0*3, allowMTSort);
currentSubset.sortSamples2(fractionPerEpoch0*3, samplesThisEpoch, allowMTSort, flist);
}
}
private void clearStats() {
rawErrorSum=0;
weightedErrorSum=0;
tpSum=tnSum=fpSum=fnSum=0;
}
private void gatherStats(JobResults job) {
rawErrorSum+=job.errorSum;
weightedErrorSum+=job.weightedErrorSum;
tpSum+=job.tpSum;
tnSum+=job.tnSum;
fpSum+=job.fpSum;
fnSum+=job.fnSum;
}
private void mergeStats(int samples) {
final int outputs=(data!=null ? data.numOutputs() : validateSet.numOutputs());
final double invSamples=1.0/samples;
final double invOutputs=1.0/outputs;
// final double e1=net0.errorSum*invSamples;
// final double we1=net0.weightedErrorSum*invSamples;
// assert(false) : "TP="+tpSum+", TN="+tnSum+", FP="+fpSum+", FN="+fnSum+"; sum="+(tpSum+tnSum+fpSum+fnSum);
fpRate=fpSum*invSamples*invOutputs;
fnRate=fnSum*invSamples*invOutputs;
tpRate=tpSum*invSamples*invOutputs;
tnRate=tnSum*invSamples*invOutputs;
final double e3=rawErrorSum*invSamples;
final double we3=weightedErrorSum*invSamples;
// assert!Double.isNaN(e3) : invSamples;
rawErrorRate=e3;//Tools.max(e1, e3);//, e2);
weightedErrorRate=we3;//Tools.max(we1, we3);//, e2);
setNetStats(net0);
}
void calcNetStats(boolean retainOldCutoff) {
SampleSet set=validateSet;
if(validateThisEpoch){
if(retainOldCutoff) {
set.sortByValue();
lastCutoff=net0.cutoff;
fpRate=set.calcFPRFromCutoff(lastCutoff);
fnRate=set.calcFNRFromCutoff(lastCutoff);
}else if(crossoverFpMult>0) {
set.sortByValue();
lastCutoff=set.calcCutoffFromCrossover(crossoverFpMult);
fpRate=set.calcFPRFromCutoff(lastCutoff);
fnRate=set.calcFNRFromCutoff(lastCutoff);
}else if(targetFPR>=0) {
set.sortByValue();
fpRate=targetFPR;
fnRate=set.calcFNRFromFPR(targetFPR);
lastCutoff=set.calcCutoffFromFPR(fpRate);
fpRate=set.calcFPRFromCutoff(lastCutoff);
}else if(targetFNR>=0) {
set.sortByValue();
fnRate=targetFNR;
fpRate=set.calcFPRFromFNR(targetFNR);
lastCutoff=set.calcCutoffFromFNR(fnRate);//TODO: Test this function
fnRate=set.calcFNRFromCutoff(lastCutoff);
}else{
lastCutoff=Trainer.cutoffForEvaluation;
// fpRate=validateSet.calcFPRFromCutoff(lastCutoff);
// fnRate=validateSet.calcFNRFromCutoff(lastCutoff);
}
tpRate=(set.numPositive/(double)set.samples.length)-fnRate;
tnRate=(set.numNegative/(double)set.samples.length)-fpRate;
}else {
//Not sure what to do here if retainOldCutoff=true
lastCutoff=Trainer.cutoffForEvaluation;
}
// assert(false) : crossoverFpMult+", "+lastCutoff+", "+fpRate+", "+fnRate+", "+targetFPR+", "+set.numPositive+", "+set.numNegative;
// assert(fnRate<1) : fnRate+", "+targetFNR+", "+targetFPR;//This was added because one time I forgot to include positive samples
setNetStats(net0);
}
private void setNetStats(CellNet net) {
net.fpRate=(float) fpRate;
net.fnRate=(float) fnRate;
net.tpRate=(float) tpRate;
net.tnRate=(float) tnRate;
net.errorRate=(float) rawErrorRate;
net.weightedErrorRate=(float) weightedErrorRate;
net.alpha=(float) alpha;
net.annealStrength=(float) annealStrength;
net.epoch=currentEpoch;
if(lastCutoff!=999) {net.setCutoff((float)lastCutoff);}
}
/*--------------------------------------------------------------*/
public final boolean success(){return !errorState;}
/*--------------------------------------------------------------*/
/*---------------- Common Fields ----------------*/
/*--------------------------------------------------------------*/
private final Trainer parent;
private final CellNet net0;//Basis network
private final CellNet net00;//A copy
private final CellNet[] subnets; //Copies for worker threads (if they don't make copies themselves)
/*--------------------------------------------------------------*/
private SampleSet data;
private SampleSet validateSet;
private final FloatList flist;
private Subset currentSubset;
private Sample[] currentSamples;
private final ReentrantReadWriteLock setLock;
/*--------------------------------------------------------------*/
// private final long annealSeed;
private final int jobsPerEpoch;
// private final int jobsPerBatch; //TODO: Change threads to this.
private final boolean orderedJobs; //Without ordered, very very slight nondeterminism.
private final ArrayBlockingQueue<JobResults> jobResultsQueue;
private final ArrayBlockingQueue<JobData> workerQueue;
private final ArrayBlockingQueue<JobData> launchQueue;
final Profiler mprof=new Profiler("M", 13);
private final boolean training;
/*--------------------------------------------------------------*/
final int maxEpochs;
final float targetError;
final float targetFPR;
final float targetFNR;
final float crossoverFpMult;
/*--------------------------------------------------------------*/
final boolean sortAll;
final boolean sort;
final boolean sortInThread;
final boolean shuffleSubset; //Only if sortInThread is true
final boolean launchInThread;
final boolean allowMTSort;
/*--------------------------------------------------------------*/
final double alphaZero;
final double alphaMult;
final double alphaMult2;
final int peakAlphaEpoch;
final double alphaIncrease;
final int alphaEpochs;
final double alphaDropoff;
final float annealStrength0;
final float annealProb;
final float annealMult2;
final double annealDropoff0;
final int minAnnealEpoch;
final int maxAnnealEpoch;
private final float fractionPerEpoch0;
private final float fractionPerEpoch2;
// private float fractionPerEpoch;
private float fpeMult=1.0f;
private final int fpeStart;
private final float positiveTriage;
private final float negativeTriage;
private final int startTriage;
private final boolean printStatus;
private final int printInterval;
private final float dumpRate;
private final int dumpEpoch;
private final int minWeightEpoch;
private final float minWeightEpochInverse;
/*--------------------------------------------------------------*/
float bestErrorRate=999;
float bestFNR=999;
double rawErrorSum=0;
double weightedErrorSum=0;
long tpSum=0, tnSum=0, fpSum=0, fnSum=0;
double rawErrorRate=999f;
double weightedErrorRate=999f;
double fpRate=0, fnRate=0, tpRate, tnRate;
double lastCutoff=999f;
double annealStrength;
double annealDropoff;
double alpha;
/*--------------------------------------------------------------*/
private int nextPrintEpoch=1;
private int samplesThisEpoch=-1;
private boolean validateThisEpoch=false;
private int currentEpoch=0;
/*--------------------------------------------------------------*/
/*---------------- Final Fields ----------------*/
/*--------------------------------------------------------------*/
final Random randyAnneal;
// private static final Sample[] poisonSamples=new Sample[0];
/*--------------------------------------------------------------*/
/*---------------- Common Fields ----------------*/
/*--------------------------------------------------------------*/
/** Print status messages to this output stream */
private PrintStream outstream=System.err;
/** Print verbose messages */
public static boolean verbose=false;
/** True if an error was encountered */
public boolean errorState=false;
}
|