1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
# Counting cells and transcripts for inDrops3 data
## Workflow
Bcbio installation paths in this workflow correspond to [O2 bcbio installation](https://wiki.rc.hms.harvard.edu/display/O2).
Adjust to bcbio installation you are working with.
### 1. Check reference genome and transcriptome
mouse project:
- mm10 reference genome: /n/shared_db/bcbio/biodata/genomes/Mmusculus/mm10
- transcriptome_fasta: /n/shared_db/bcbio/biodata/genomes/Mmusculus/mm10/rnaseq/ref-transcripts.fa
- transcriptome_gtf: /n/shared_db/bcbio/biodata/genomes/Mmusculus/mm10/rnaseq/ref-transcripts.gtf
human project:
- hg38 reference genome: /n/shared_db/bcbio/biodata/genomes/Hsapiens/hg38
- transcriptome_fasta: /n/shared_db/bcbio/biodata/genomes/Hsapiens/hg38/rnaseq/ref-transcripts.fa
- transcriptome_gtf: /n/shared_db/bcbio/biodata/genomes/Hsapiens/hg38/rnaseq/ref-transcripts.gtf
Those are *spliced* references.
To prepare the unspliced reference, use:
```bash
#!/bin/bash
$1 = ref-transcripts.gtf
bname=`basename $1 .gtf`
awk 'BEGIN{FS="\t"; OFS="\t"} $3 == "transcript"{ $3="exon"; print}' $1 > $bname.premrna.gtf
gffread -g /path/to/genome_reference/genome.fa $bname.premrna.gtf -w $bname.unspliced.fa
```
In some datasets using the unspliced reference allows to yield 1.5X more counts.
### 2. Create bcbio project structure in /scratch
```
mkdir sc_mouse
cd sc_mouse
mkdir config input final work
```
### 3. Prepare fastq input in sc_mouse/input
- if data comes in >1 lanes, merge lanes for every read:
```
cat lane1_r1.fq.gz lane2_r1.fq.gz > project_1.fq.gz
cat lane1_r2.fq.gz lane2_r2.fq.gz > project_2.fq.gz
```
- some sequencing cores send bz2 files not gz
```
bunzip2 *.bz2
cat *R1.fastq | gzip > sample_1.fq.gz
```
- some cores produce R1,R2,R3,R4, others R1,R2,I1,I2, rename files
```
bcbio_R1 = R1 = 100 or 86 or 64 bp transcript read
bcbio_R2 = I1 = 8 bp part 1 of cell barcode
bcbio_R3 = I2 = 8 bp sample (library) barcode
bcbio_R4 = R2 = 14 bp = 8 bp part 2 of cell barcode + 6 bp of transcript UMI
```
*Some 100 bp R1 libraries yield low count numbers, and trimming them to 61 bp improves counting*:
```bash
#!/bin/bash
# $1 = sample_1.fq.gz
java -jar /path/to/Trimmomatic-0.39/trimmomatic-0.39.jar SE \
-threads 10 \
-phred33 \
$1 \
$1.trimmed.fq.gz \
CROP:61
```
- files in sc_mouse/input should be (KM here is a project name):
```
KM_1.fq.gz
KM_2.fq.gz
KM_3.fq.gz
KM_4.fq.gz
```
### 4. Specify sample barcodes
Sample barcodes should be in *sc_mouse/config/sample_barcodes.csv*.
Check out if the sample barcodes provided match the actual barcodes in the data.
```shell
gunzip -c FC_X_3.fq.gz | awk '{if(NR%4 == 2) print $0}' | head -n 400000 | sort | uniq -c | sort -k1,1rn | awk '{print $2","$1}' | head
AGGCTTAG,112303
ATTAGACG,95212
TACTCCTT,94906
CGGAGAGA,62461
CGGAGATA,1116
CGGATAGA,944
GGGGGGGG,852
ATTAGACC,848
ATTAGCCG,840
ATTATACG,699
```
Sometimes you need to reverse complement sample barcodes:
```
cat barcodes_original.csv | awk -F ',' '{print $1}' | tr ACGTacgt TGCAtgca | rev
```
sample_barcodes.csv
```
TCTCTCCG,S01
GCGTAAGA,S02
CCTAGAGT,S03
TCGACTAG,S04
TTCTAGAG,S05
```
### 5. Create bcbio yaml config file
*sc_mouse/config/sc-mouse.yaml*:
```
details:
- algorithm:
cellular_barcode_correction: 1
minimum_barcode_depth: 1000
sample_barcodes: /full/path/sc_mouse/config/sample_barcodes.csv
transcriptome_fasta: /n/shared_db/bcbio/biodata/genomes/Mmusculus/mm10/rnaseq/ref-transcripts.fa
transcriptome_gtf: /n/shared_db/bcbio/biodata/genomes/Mmusculus/mm10/rnaseq/ref-transcripts.gtf
umi_type: harvard-indrop-v3
analysis: scRNA-seq
description: PI_name
files:
- /full/path/sc_mouse/input/KM_1.fq.gz
- /full/path/sc_mouse/input/KM_2.fq.gz
- /full/path/sc_mouse/input/KM_3.fq.gz
- /full/path/sc_mouse/input/KM_4.fq.gz
genome_build: mm10
metadata: {}
fc_name: sc-mouse
upload:
dir: /full/path/sc_mouse/final
```
Use `cd sc_mouse/input; readlink -f *` to grab full path to each file and paste into yaml.
### 6. Create a batch script
*sc_mouse/config/bcbio.sh*:
```shell
#!/bin/bash
# https://slurm.schedmd.com/sbatch.html
#SBATCH --partition=priority # Partition (queue)
#SBATCH --time=10-00:00 # Runtime in D-HH:MM format
#SBATCH --job-name=km # Job name
#SBATCH -c 20
#SBATCH --mem-per-cpu=5G # Memory needed per CPU
#SBATCH --output=project_%j.out # File to which STDOUT will be written, including job ID
#SBATCH --error=project_%j.err # File to which STDERR will be written, including job ID
#SBATCH --mail-type=ALL # Type of email notification (BEGIN, END, FAIL, ALL)
bcbio_nextgen.py ../config/sc-mouse.yaml -n 20
```
- most projects take < 5days, but some large 4 lane could take more, like 7-8
### 7. Run bcbio
```shell
cd sc_mouse_work
sbatch ../config/bcbio.sh
```
### 8.1 Create Seurat object
Reading matrices from bcbio and creating seurat objects might take a lot of RAM.
If you can't fit your dataset on a laptop, create R conda environment on a cluster,
as [described](https://github.com/hbc/knowledgebase/blob/master/scrnaseq/Single-Cell-conda.md)
```
# O2: use interactive job with 20G RAM
# sometimes Rscript is not working but works from R
# conda activate r
# which R
# Rscript 00_create_seurat_object.R
# conda deactivate
# should have 3 files from bcbio
library(R.utils)
file.rename("tagcounts.mtx", "matrix.mtx")
file.rename("tagcounts.mtx.rownames", "features.tsv")
file.rename("tagcounts.mtx.colnames", "barcodes.tsv")
gzip("matrix.mtx")
gzip("features.tsv")
gzip("barcodes.tsv")
library(Seurat)
counts <- Read10X(data.dir = ".", gene.column = 1)
seurat_object <- CreateSeuratObject(counts = counts, min.features = 100)
saveRDS(seurat_object, "seurat.bcbio.RDS")
```
### 8.2. Create SingleCellExperiment object
You may convert Seurat object to SingleCellExperiment, but also you may choose to save duplicated matrices in SCE.
```
# run:
# interactive session with 20G of RAM
# cd to project/final/project
# conda activate r
# Rscript 01.bcbio2sse.R
library(SingleCellExperiment)
library(Matrix)
library(AnnotationHub)
library(tidyverse)
species = "Mus musculus"
counts = readMM(file.path("tagcounts.mtx"))
dupcounts = readMM(file.path("tagcounts-dupes.mtx"))
rownames = read.csv(file.path("tagcounts.mtx.rownames"), header = F)[["V1"]]
rownames = as.character(rownames)
colnames = read.csv(file.path("tagcounts.mtx.colnames"), header = F)[["V1"]]
colnames = make.names(as.character(colnames))
reads = read.csv(file.path("cb-histogram.txt"), header = F, sep="\t", row.names = 1)
rownames(reads) = make.names(rownames(reads))
counts = as(counts, "dgCMatrix")
rownames(counts) = rownames
colnames(counts) = colnames
metadata = read.csv(file.path("tagcounts.mtx.metadata"))
rownames(metadata) = colnames
metadata[["nUMI"]] = colSums(counts)
metadata[["nGenes"]] = colSums(counts>0)
metadata[["log10GenesPerUMI"]] = log10(metadata$nGene) / log10(metadata$nUMI)
metadata[["nReads"]] = reads[colnames,]
metadata[["saturation_rate"]] = 1-(colSums(counts)/colSums(dupcounts))
metadata[["dupReads"]] = colSums(dupcounts)
metadata[["dupMeanReads"]] = colMeans(dupcounts)
# check if file is empty and skip if the case
# annotation was download from ensembl biomart to match the version GRCh38.92
# AnnotationHub can be used.
## Load the annotation resource.
ah <- AnnotationHub()
ahDb <- query(ah, pattern= c(species, "EnsDb") )
ahEdb <- ahDb[[rev(names(ahDb))[1]]] # last one is chosen
rows = genes(ahEdb) %>%
as.data.frame() %>%
janitor::clean_names() %>%
dplyr::select(gene_id,
gene_name,
description,
biotype = gene_biotype,
entrezid,
chrom = seqnames) %>%
group_by(gene_id, biotype, chrom, description) %>%
summarise(gene_name = paste(unique(gene_name), collapse = ","),
entrezid = paste(unique(entrezid), collapse = ",")) %>%
mutate(gene_name=ifelse(gene_name=="", gene_id, gene_name)) %>%
as.data.frame()
# mit
rrna = rows %>% dplyr::filter(chrom == "MT") %>% .[["gene_id"]] %>% intersect(., rownames)
metadata[["mtUMI"]] = colSums(counts[rrna,], na.rm = T)
metadata[["mtUMI"]][is.na(metadata[["mtUMI"]])] = 0
metadata[["mitoRatio"]] = metadata$mtUMI/metadata$nUMI
se = SingleCellExperiment(assays=list(raw = counts), colData = metadata)
saveRDS(se, "se.RDS")
```
### 1a. (Optional)
Fresh transcriptome annotations are avaliable from [Gencode](https://www.gencodegenes.org/mouse/)
The mouse gtf uses chrom names with chr matching mm10 assembly.
```
cd sc_mouse/input
wget ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M23/gencode.vM23.annotation.gtf.gz
gunzip gencode.vM23.annotation.gtf.gz
gffread -g /n/shared_db/bcbio/biodata/genomes/Mmusculus/mm10/seq/mm10.fa gencode.vM23.annotation.gtf -x gencode.vM23.annotation.cds.fa
```
update sc_mouse/config/sc_mouse.yaml:
```
transcriptome_fasta: gencode.vM23.annotation.cds.fa
transcriptome_gtf: gencode.vM23.annotation.gtf
```
## Parameters
* `umi_type` Single cell library type: [harvard-indrop, harvard-indrop-v2, 10x_v2, icell8, surecell].
* `minimum_barcode_depth=10000` Cellular barcodes with less reads are discarded.
* `sample_barcodes` A file with one sample barcode per line.
If the file contains sample name for each barcode, this will be used to create a `tagcounts.mtx.metadata`
that match each cell with the sample name associated with the barcode.
For inDrops3 protocol sample barcodes are in the fastq file for read3. Example of `sample_barcodes` file:
```
AATTCCGG,sample1
CCTTGGAA,sample2
```
* `singlecell_quantifier=rapmap` Quantifier to use for single-cell RNA-sequencing. Supports `rapmap` or `kallisto`.
* *optional* `cellular_barcodes` A file or a list [file1.txt, file2.txt] of valid cellular barcodes.
* *optional* `cellular_barcode_correction=1` Number of errors to correct in identified cellular barcodes. Requires `cellular_barcodes` option set. Set to 0 to turn off error correction.
* *optional* `transcriptome_fasta` alternative transcriptome reference.
* *optional* `transcriptome_gtf` An optional GTF file of the transcriptome to quantitate, rather than the bcbio installed version. This is recommended for single-cell RNA-sequencing experiments.
* `demultiplexed` If set to True, each file will be treated as a cell or well and not a collection of cells. Use this if your data has already been broken up into cells or wells.
## Output
Project directory `bcbio_run/final/project`:
* `tagcounts.mtx` -- count matrix compatible with dgCMatrix type in R.
* `tagcounts-dupes.mtx` -- count matrix compatible with dgCMatrix type in R but with the duplicated reads counted.
* `tagcounts.mtx.colnames` -- cell names that would be the columns for the matrix.
* `tagcounts.mtx.rownames` -- gene names that would be the rows for the matrix.
* `tagcounts.mtx.metadata` -- metadata that match the colnames for the matrix. This is coming from the barcode.csv file and the metadata given in the YAML config file. for the matrix.
* `cb-histogram.txt` -- total number of dedup reads assigned to a cell. Comparing colSums(tagcounts.mtx) to this number can tell you how many reads mapped to genes.
Sample directories `bcbio_run/final/sample`:
* `SAMPLE-transcriptome.bam` -- BAM file aligned to transcriptome.
* `SAMPLE-mtx.*` -- gene counts as explained in the project directory.
## Steps
Minor steps and exact file locations are omitted.
* = repeated for every sample in sample_barcodes.csv
*bcbio.yaml config*:
```yaml
details:
- algorithm:
cellular_barcode_correction: 1
minimum_barcode_depth: 1000
sample_barcodes: /path/project/config/barcodes.csv
transcriptome_fasta: /path/genomes/Mmusculus/mm10/rnaseq/ref-transcripts.fa
transcriptome_gtf: /path/genomes/Mmusculus/mm10/rnaseq/ref-transcripts.gtf
umi_type: harvard-indrop-v3
analysis: scRNA-seq
description: project
files:
- /path/project_1.fq.gz
- /path/project_2.fq.gz
- /path/project_3.fq.gz
- /path/project_4.fq.gz
genome_build: mm10
fc_name: sc-mouse
upload:
dir: /path/project/final
```
1. parse barcode information from reads 2,3,4 to the fastq read name, [CELL]\_[value]:[UMI]\_[value]:[sample]\_[value]. umis supports many protocols, however, the downside is speed - this step can take up to 3-4 days:
```shell
python umis fastqtransform \
--separate_cb umis/harvard-indrop-v3-transform.json --cores 16 \
project_1.fq.gz project_2.fq.gz project_3.fq.gz project_4.fq.gz | \
seqtk seq -L 20 - | gzip > project.umitransformed.fq.gz
```
2. create a fastq file for each sample:
```shell
python umis demultiplex_samples \
--nedit 1 --barcodes sample_barcodes.csv \
--out_dir demultiplexed project.umitransformed.fq.gz
```
3. Cellular barcode filter
```shell
python umis cb_filter \
--cores 16 --bc1 harvard-indrop-v3-cb1.txt.gz --nedit 1 \
--bc2 harvard-indrop-v3-cb2.txt.gz demultiplexed/[sample-barcodeAATTTTT].fq | \
gzip -c > project-sample_barcode.filtered.fq.gz
```
4. \* create cellular barcode histogram, also creates cb-histogram-filtered.txt for cells with nreads > minimum_barcode_depth:
```shell
python umis cb_histogram project-sample_barcode.filtered.fq.gz > cb-histogram.txt
```
5. \* create index genome for rapmap:
```shell
rapmap quasiindex -k 31 -i mm10 -t mm10/ref-transcripts.fa
```
6. \* align reads with rapmap:
```shell
rapmap quasimap -t 16 -i mm10 \
-r <(gzip -cd project-sample_barcode.filtered.fq.gz) | \
samtools sort -@ 16 -m 1G -T project-sample_barcode-sorttmp \
-o project-sample_barcode.bam /dev/stdin
samtools index -@ 16 project-sample_barcode.bam project-sample_barcode.bam.bai
```
7. \* count transcripts:
```shell
python umis fasttagcount --cb_cutoff 1000 \
--genemap ref-transcripts-tx2gene.tsv
--cb_histogram project-sample_barcode/cb-histogram.txt \
--umi_matrix project-sample_barcode-dupes.mtx.full \
project-sample_barcode.bam project-sample_barcode.mtx.full
python umis sparse project-sample_barcode.mtx.full \
project-sample_barcode.mtx
python umis sparse project-sample_barcode-dupes.mtx.full \
project-sample_barcode-dupes.mtx
```
8. Concatenate all cb-histogram-filtered.txt files:
```shell
cat project-[all-barcodes]/cb-histogram-filtered.txt > cb-histogram.txt
```
## Description
bcbio-nextgen supports universal molecular identifiers (UMI) based single-cell RNA-seq analyses. If your single-cell prep does not use universal molecular identifiers (UMI), you can most likely just run the standard RNA-seq pipeline and use the results from that. The UMI are used to discard reads which are possibly PCR duplicates and is very helpful for removing some of the PCR duplicate noise that can dominate single-cell experiments.
Unlike the standard RNA-seq pipeline, the single-cell pipeline expects the FASTQ input files to not be separated by cellular barcode, so each file is a mix of cells identified by a cellular barcode (CB), and unique reads from a transcript are identified with a UMI. bcbio-nextgen inspects each read, identifies the cellular barcode and UMI and puts them in the read name. Then the reads are aligned to the transcriptome with [RapMap](https://github.com/COMBINE-lab/RapMap) and the number of reads aligning to each transcript is counted for each cellular barcode. The output is a table of counts with transcripts as the rows and columns as the cellular barcodes for each input FASTQ file.
Optionally the reads can be quantitated with `kallisto` to output transcript compatibility counts rather than counts per gene ([TCC paper](https://doi.org/10.1186/s13059-016-0970-8)).
To extract the UMI and cellular barcodes from the read, bcbio-nextgen needs to know where the UMI and the cellular barcode are expected to be in the read. Currently there is support for two schemes, the inDrop system from the Harvard single-cell core facility and CEL-seq. If bcbio-nextgen does not support your UMI and barcoding scheme, please open up an issue and we will help implement support for it.
Most of the heavy lifting for this part of bcbio-nextgen is implemented in the [umis](https://github.com/vals/umis) repository.
## References
- [Indrops3 library structure](https://singlecellcore.hms.harvard.edu/resources)
- [Even shorter guide](https://github.com/bcbio/bcbio-nextgen/blob/master/config/templates/indrop-singlecell.yaml)
- [Much more comprehensive guide](https://github.com/hbc/tutorials/blob/master/scRNAseq/scRNAseq_analysis_tutorial/lessons/01_bcbio_run.md)
|