1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
#!/usr/bin/python3
"""Exploratory code to convert bcbio generated CWL into WDL.
Uses cwltool parser to parse input CWL then, calls out to cwl2wdl
for generation of WDL using this fork of cwl2wdl:
https://github.com/chapmanb/cwl2wdl
Current status:
- Connected workflow, sub-workflow and tool output
- Records -> Object
- Dotproduct scatter parallelization
Needed for WDL finalization to support bcbio:
- structs to define attributes of an Object
https://github.com/broadinstitute/cromwell/issues/2283
- Implement standard library function to dump input records in a
JSON format ('write_struct')
- Implement standard library function to read output of
a struct/object with multiple levels of nesting (`read_struct`)
- Associate secondary files (like `bai`, `tbi`) with primary file ('bam`, 'vcf.gz`)
https://github.com/broadinstitute/cromwell/issues/2269
"""
from __future__ import print_function
import collections
import os
import subprocess
import sys
from cwl2wdl import generators
from cwl2wdl import base_classes as cwl2wdl_classes
import cwltool.load_tool
import cwltool.workflow
def main(wf_file, json_file):
wf_file = os.path.abspath(wf_file)
out_dir = os.path.dirname(wf_file).replace("-workflow", "-wdl")
if not os.path.exists(out_dir):
os.makedirs(out_dir)
main_wf = cwltool.load_tool.load_tool(wf_file, cwltool.workflow.defaultMakeTool)
records = {}
main_wf_dict, records = _wf_to_dict(main_wf, records)
main_wf_dict["structs"] = records
main_wf_class = cwl2wdl_classes.Workflow(main_wf_dict)
for wf_class in [x.task_definition for x in main_wf_class.subworkflows] + [main_wf_class]:
wdl_file = os.path.join(out_dir, "%s.wdl" % wf_class.name)
wdl_doc = generators.WdlWorkflowGenerator(wf_class).generate_wdl()
with open(wdl_file, "w") as out_handle:
out_handle.write(wdl_doc)
_validate(wdl_file)
def _validate(wdl_file):
"""Run validation on the generated WDL output using wdltool.
"""
start_dir = os.getcwd()
os.chdir(os.path.dirname(wdl_file))
print("Validating", wdl_file)
subprocess.check_call(["wdltool", "validate", wdl_file])
os.chdir(start_dir)
def _wf_to_dict(wf, records):
"""Parse a workflow into cwl2wdl style dictionaries for base and sub-workflows.
"""
inputs, outputs, records = _get_wf_inout(wf, records)
out = {"name": _id_to_name(_clean_id(wf.tool["id"])), "inputs": inputs,
"outputs": outputs, "steps": [], "subworkflows": [],
"requirements": []}
for step in wf.steps:
is_subworkflow = isinstance(step.embedded_tool, cwltool.workflow.Workflow)
inputs, outputs, remapped, prescatter = _get_step_inout(step)
inputs, scatter = _organize_step_scatter(step, inputs, remapped)
if is_subworkflow:
wf_def, records = _wf_to_dict(step.embedded_tool, records)
out["subworkflows"].append({"id": "%s.%s" % (wf_def["name"], wf_def["name"]), "definition": wf_def,
"inputs": inputs, "outputs": outputs, "scatter": scatter,
"prescatter": prescatter})
else:
task_def, records = _tool_to_dict(step.embedded_tool, records, remapped)
out["steps"].append({"task_id": task_def["name"], "task_definition": task_def,
"inputs": inputs, "outputs": outputs, "scatter": scatter,
"prescatter": prescatter})
return out, records
def _clean_id(x):
"""Replace non-allowed characters in WDL input
"""
return x.replace("wf-", "").replace("-", "_")
def _get_step_inout(step):
"""Retrieve set of inputs and outputs connecting steps.
"""
inputs = []
outputs = []
prescatter = collections.defaultdict(list)
remapped = {}
assert step.outputs_record_schema["type"] == "record"
output_names = set([])
for outp in step.outputs_record_schema["fields"]:
outputs.append({"id": outp["name"]})
output_names.add(outp["name"])
assert step.inputs_record_schema["type"] == "record"
for inp in step.inputs_record_schema["fields"]:
source = inp["source"].split("#")[-1].replace("/", ".")
# Check if we're unpacking from a record, and unpack from our object
if "valueFrom" in inp:
attr_access = "['%s']" % inp["name"]
if inp["valueFrom"].find(attr_access) > 0:
source += ".%s" % inp["name"]
if isinstance(inp["type"], dict) and isinstance(inp["type"].get("items"), dict):
if inp["type"]["items"].get("type") == "array" and "inputBinding" in inp["type"]:
source, prescatter = _unpack_object_array(inp, source, prescatter)
# Avoid clashing input and output names, WDL requires unique
if inp["name"] in output_names:
new_name = inp["name"] + "_input"
remapped[inp["name"]] = new_name
inp["name"] = new_name
inputs.append({"id": inp["name"], "value": source})
return inputs, outputs, remapped, dict(prescatter)
def _unpack_object_array(inp, source, prescatter):
"""Unpack Array[Object] with a scatter for referencing in input calls.
There is no shorthand syntax for referencing all items in an array, so
we explicitly unpack them with a scatter.
"""
raise NotImplementedError("Currently not used with record/struct/object improvements")
base_rec, attr = source.rsplit(".", 1)
new_name = "%s_%s_unpack" % (inp["name"], base_rec.replace(".", "_"))
prescatter[base_rec].append((new_name, attr, _to_variable_type(inp["type"]["items"])))
return new_name, prescatter
def _organize_step_scatter(step, inputs, remapped):
"""Add scattering information from inputs, remapping input variables.
"""
def extract_scatter_id(inp):
_, ns_var = inp.split("#")
_, var = ns_var.split("/")
return var
scatter_local = {}
if "scatter" in step.tool:
assert step.tool["scatterMethod"] == "dotproduct", \
"Only support dotproduct scattering in conversion to WDL"
inp_val = collections.OrderedDict()
for x in inputs:
inp_val[x["id"]] = x["value"]
for scatter_key in [extract_scatter_id(x) for x in step.tool["scatter"]]:
scatter_key = remapped.get(scatter_key) or scatter_key
val = inp_val[scatter_key]
if len(val.split(".")) in [1, 2]:
base_key = val
attr = None
elif len(val.split(".")) == 3:
orig_location, record, attr = val.split(".")
base_key = "%s.%s" % (orig_location, record)
else:
raise ValueError("Unexpected scatter input: %s" % val)
local_ref = base_key.split(".")[-1] + "_local"
scatter_local[base_key] = local_ref
if attr:
local_ref += ".%s" % attr
inp_val[scatter_key] = local_ref
inputs = [{"id": iid, "value": ival} for iid, ival in inp_val.items()]
return inputs, [(v, k) for k, v in scatter_local.items()]
def _get_wf_inout(wf, records):
assert wf.inputs_record_schema["type"] == "record"
assert wf.outputs_record_schema["type"] == "record"
inputs = []
outputs = []
for inp in wf.inputs_record_schema["fields"]:
cur_inp, records = _input_to_dict(inp, records)
inputs.append(cur_inp)
for outp in wf.outputs_record_schema["fields"]:
cur_outp, records = _output_to_dict(outp, records)
outputs.append(cur_outp)
return inputs, outputs, records
def _record_to_struct(cur_rec, records):
"""Convert a CWL record into a WDL struct/Object.
Work in progress to support changes to WDL Objects to
be defined in structs.
"""
def to_camel_case(x):
def uppercase_word(w):
return w[0].upper() + w[1:]
return "".join(uppercase_word(w) for w in x.split("_"))
struct_name = to_camel_case(cur_rec["name"].split("/")[-1])
if struct_name not in records:
records[struct_name] = collections.OrderedDict()
for field in cur_rec["fields"]:
field_type, records = _to_variable_type(field["type"], records)
records[struct_name][field["name"].split("/")[-1]] = field_type
return struct_name, records
def _to_variable_type(x, records):
"""Convert CWL variables to WDL variables, handling nested arrays.
"""
var_mapping = {"string": "String", "File": "File", "null": "String",
"long": "Float", "double": "Float", "int": "Int"}
if isinstance(x, dict):
if x["type"] == "record":
struct_name, records = _record_to_struct(x, records)
return struct_name, records
else:
assert x["type"] == "array", x
cur_type, records = _to_variable_type(x["items"], records)
return "Array[%s]" % cur_type, records
elif isinstance(x, (list, tuple)):
vars = [v for v in x if v != "null"]
return var_mapping[vars[0]], records
else:
return var_mapping[x], records
def _variable_type_to_read_fn(vartype, records):
"""Convert variant types into corresponding WDL standard library functions.
"""
fn_map = {"String": "read_string", "Array[String]": "read_lines",
"Array[Array[String]]": "read_tsv",
"Object": "read_object", "Array[Object]": "read_objects",
"Array[Array[Object]]": "read_objects",
"Int": "read_int", "Float": "read_float"}
for rec_name in records.keys():
fn_map["%s" % rec_name] = "read_struct"
fn_map["Array[%s]" % rec_name] = "read_struct"
fn_map["Array[Array[%s]]" % rec_name] = "read_struct"
# Read in Files as Strings
vartype = vartype.replace("File", "String")
# Can't read arrays of Ints/Floats
vartype = vartype.replace("Array[Int]", "Array[String]")
vartype = vartype.replace("Array[Float]", "Array[String]")
return fn_map[vartype]
def _arg_to_dict(x, requirements):
if isinstance(x, basestring):
return {"prefix": "", "position": None, "value": x}
elif isinstance(x, dict) and "valueFrom" in x and x["valueFrom"].startswith("sentinel_runtime"):
for r in requirements:
if r["requirement_type"] == "cpu":
cores = r["value"]
elif r["requirement_type"] == "memory":
ram = "".join(r["value"].split())
return {"prefix": "", "position": None, "value": "sentinel_runtime=cores,%s,ram,%s" % (cores, ram)}
else:
raise NotImplementedError(x)
def _input_to_dict(i, records, remapped=None):
"""Convert CWL input into dictionary required for a cwl2wdl Input object.
"""
if not remapped: remapped = {}
var_type, records = _to_variable_type(i["type"], records)
if var_type.startswith("Array") and "inputBinding" in i.get("type", {}):
ib = i["type"]["inputBinding"]
elif "inputBinding" in i:
ib = i["inputBinding"]
else:
ib = {"prefix": None, "itemSeparator": ";;", "position": None}
name = _id_to_localname(i["id"]) if "id" in i else i["name"]
return {"name": remapped.get(name) or name,
"variable_type": var_type,
"prefix": ib["prefix"], "separator": ib["itemSeparator"],
"position": ib["position"], "is_required": True,
"default": i.get("default", None), "separate": ib.get("separate", True)}, records
def _output_to_dict(o, records):
if "outputSource" in o:
name = o["outputSource"].split("#")[-1].replace("/", ".")
elif "id" in o:
name = _id_to_localname(o["id"])
else:
name = o["name"]
out_file = "wdl.output.%s.txt" % name
vartype, records = _to_variable_type(o["type"], records)
read_fn_name = _variable_type_to_read_fn(vartype, records)
return {"name": name, "variable_type": vartype,
"output": "%s('%s')" % (read_fn_name, out_file), "is_required": True}, records
def _id_to_localname(input_id):
return os.path.basename(input_id).split("#")[1]
def _id_to_name(input_id):
return os.path.splitext(os.path.basename(input_id))[0]
def _tool_to_dict(tool, records, remapped):
"""Parse a tool definition into a cwl2wdl style dictionary.
"""
requirements = _requirements_to_dict(tool.requirements + tool.hints)
inputs = []
outputs = []
for inp in tool.tool["inputs"]:
ready_inp, records = _input_to_dict(inp, records, remapped)
inputs.append(ready_inp)
for outp in tool.tool["outputs"]:
ready_outp, records = _output_to_dict(outp, records)
outputs.append(ready_outp)
out = {"name": _id_to_name(tool.tool["id"]),
"baseCommand": " ".join(tool.tool["baseCommand"]),
"arguments": [_arg_to_dict(a, requirements) for a in tool.tool["arguments"]],
"inputs": inputs,
"outputs": outputs,
"requirements": requirements,
"stdin": None, "stdout": None}
return out, records
def _requirements_to_dict(rs):
"""Convert supported requirements into dictionary for output.
"""
out = []
added = set([])
for r in rs:
if r["class"] == "DockerRequirement" and "docker" not in added:
added.add("docker")
out.append({"requirement_type": "docker", "value": r["dockerImageId"]})
elif r["class"] == "ResourceRequirement":
if "coresMin" in r and "cpu" not in added:
added.add("cpu")
out.append({"requirement_type": "cpu", "value": r["coresMin"]})
if "ramMin" in r and "memory" not in added:
added.add("memory")
out.append({"requirement_type": "memory", "value": "%s MB" % r["ramMin"]})
if "tmpdirMin" in r and "disks" not in added:
added.add("disks")
out.append({"requirement_type": "disks", "value": "local-disk %s HDD" % r["tmpdirMin"]})
return out
if __name__ == "__main__":
main(*sys.argv[1:])
|