1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
|
/* The MIT License
Copyright (c) 2018-2021 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <assert.h>
#include <getopt.h>
#include <math.h>
#include <unistd.h> // for isatty
#include <inttypes.h>
#include <htslib/hts.h>
#include <htslib/vcf.h>
#include <htslib/kstring.h>
#include <htslib/kseq.h>
#include <htslib/kfunc.h>
#include <htslib/synced_bcf_reader.h>
#include <htslib/vcfutils.h>
#include <assert.h>
#include <errno.h>
#include "bcftools.h"
#include "regidx.h"
#include "filter.h"
#define USE_DNG 1 // DeNovoGear model
#define USE_ACM 2 // the new "allele-centric model" which combines fixed DNG priors with allele centric approach
#define USE_NAIVE 3 // a naive calling model based on observed GT
// Logic of the filters: include or exclude sites which match the filters?
#define FLT_INCLUDE 1
#define FLT_EXCLUDE 2
#define iFATHER 0 // don't modify, QS calculations depend on this order!
#define iMOTHER 1
#define iCHILD 2
// output tag type
#define DNM_INT (1<<0)
#define DNM_FLOAT (1<<1)
#define DNM_LOG ((1<<2)|DNM_FLOAT)
#define DNM_PHRED ((1<<3)|DNM_INT)
#define DNM_PROB ((1<<4)|DNM_FLOAT)
#define DNM_FLAG ((1<<5)|DNM_INT)
typedef struct
{
int idx[3]; // VCF sample index for child, father, mother
int pass, // do all three pass the filters?
is_male; // male pattern of chrX inheritance?
}
trio_t;
typedef struct
{
// combines priors, mutation rates, genotype transmission probability; see init_priors()
double pprob[10][10][10]; // prior probability; the order is father,mother,child
uint8_t denovo[10][10][10]; // is the GT combination not compatible with normal inheritence (0) or is de novo (1)
uint8_t denovo_allele[10][10][10]; // which of the alleles is de novo for this configuration
}
priors_t;
typedef struct
{
int argc, filter_logic, regions_is_file, targets_is_file, output_type, record_cmd_line, clevel;
int regions_overlap, targets_overlap;
char *filter_str;
filter_t *filter;
char **argv, *ped_fname, *pfm, *output_fname, *fname, *regions, *targets;
htsFile *out_fh;
bcf_srs_t *sr;
bcf_hdr_t *hdr, *hdr_out;
char *chrX_list_str;
regidx_t *chrX_idx;
trio_t *trio;
int has_fmt_ad;
int ntrio, mtrio;
int32_t *pl,*ad,*qs,*gt, *dnm_qual_int, *dnm_allele, *vaf; // input FMT/PL,AD,QS,GT values, output DNM and VAF
float *dnm_qual_float;
int mpl, mad, mqs, mgt;
double min_score;
double *pl3; // normalized PLs converted to probs for iFATHER,iMOTHER,iCHILD
double *qs3; // QS converted to probs for iFATHER,iMOTHER,iCHILD
int maprob, mpl3, mqs3, midx, *idx, force_ad, use_model;
double *alt_tmp;
int *alt_idx;
int malt_tmp, malt_idx;
char *dnm_score_tag, // the argument of --dnm-tag, by default DNM:log
*dnm_vaf_tag,
*dnm_allele_tag;
int dnm_score_type; // given by e.g. --dnm-tag DNM:log
double mrate; // --mrate, mutation rate
double pn_abs,pn_frac; // --pn
double pns_abs,pns_frac; // --pns
int with_ppl, with_pad; // --with-pPL or --with-pAD
int use_dng_priors; // --dng-priors
int need_QS;
priors_t priors, priors_X, priors_XX;
}
args_t;
args_t args;
const char *about(void)
{
return "Screen variants for possible de-novo mutations in trios.\n";
}
static const char *usage_text(void)
{
return
"\n"
"About: Screen variants for possible de-novo mutations in trios\n"
"Usage: bcftools +trio-dnm2 [OPTIONS]\n"
"Common options:\n"
" -e, --exclude EXPR Exclude trios for which the expression is true (one matching sample invalidates a trio)\n"
" -i, --include EXPR Include trios for which the expression is true (one failing samples invalidates a trio)\n"
" -o, --output FILE Output file name [stdout]\n"
" -O, --output-type u|b|v|z[0-9] u/b: un/compressed BCF, v/z: un/compressed VCF, 0-9: compression level [v]\n"
" -r, --regions REG Restrict to comma-separated list of regions\n"
" -R, --regions-file FILE Restrict to regions listed in a file\n"
" --regions-overlap 0|1|2 Include if POS in the region (0), record overlaps (1), variant overlaps (2) [1]\n"
" -t, --targets REG Similar to -r but streams rather than index-jumps\n"
" -T, --targets-file FILE Similar to -R but streams rather than index-jumps\n"
" --targets-overlap 0|1|2 Include if POS in the region (0), record overlaps (1), variant overlaps (2) [0]\n"
" --no-version Do not append version and command line to the header\n"
"\n"
"General options:\n"
" -m, --min-score NUM Do not add FMT/DNM annotation if the score is smaller than NUM\n"
" -p, --pfm [1X:|2X:]P,F,M Sample names of child (the proband), father, mother; \"1X:\" for male pattern of chrX inheritance [2X:]\n"
" -P, --ped FILE PED file with the columns: <ignored>,proband,father,mother,sex(1:male,2:female)\n"
" -X, --chrX LIST List of regions with chrX inheritance pattern or one of the presets: [GRCh37]\n"
" GRCh37 .. X:1-60000,chrX:1-60000,X:2699521-154931043,chrX:2699521-154931043\n"
" GRCh38 .. X:1-9999,chrX:1-9999,X:2781480-155701381,chrX:2781480-155701381\n"
" --dnm-tag TAG[:type] Output tag with DNM quality score and its type [DNM:log]\n"
" log .. log-scaled quality (-inf,0; float)\n"
" flag .. is a DNM, implies --use-NAIVE (1; int)\n"
" phred .. phred quality (0-255; int)\n"
" prob .. probability (0-1; float)\n"
" --force-AD Calculate VAF even if the number of FMT/AD fields is incorrect. Use at your own risk!\n"
" --va TAG Output tag name for the variant allele [VA]\n"
" --vaf TAG Output tag name for variant allele fraction [VAF]\n"
"\n"
"Model options:\n"
" --dng-priors Use the original DeNovoGear priors (including bugs in prior assignment, but with chrX bugs fixed)\n"
" --mrate NUM Mutation rate [1e-8]\n"
" --pn FRAC[,NUM] Tolerance to parental noise or mosaicity, given as fraction of QS or number of reads [0.005,0]\n"
" --pns FRAC[,NUM] Same as --pn but is not applied to alleles observed in both parents (fewer FPs, more FNs) [0.045,0]\n"
" --use-DNG The original DeNovoGear model, implies --dng-priors\n"
" --use-NAIVE A naive calling model which uses only FMT/GT to determine DNMs\n"
" --with-pAD Do not use FMT/QS but parental FMT/AD\n"
" --with-pPL Do not use FMT/QS but parental FMT/PL. Equals to DNG with bugs fixed (more FPs, fewer FNs)\n"
"\n"
"Example:\n"
" # Annotate VCF with FORMAT/DNM, run for a single trio\n"
" bcftools +trio-dnm2 -p proband,father,mother file.bcf\n"
"\n"
" # Same as above, but read the trio(s) from a PED file\n"
" bcftools +trio-dnm2 -P file.ped file.bcf\n"
"\n"
" # Same as above plus extract a list of significant DNMs using the bcftools/query command\n"
" bcftools +trio-dnm2 -P file.ped file.bcf -Ou | bcftools query -i'DNM>10' -f'[%CHROM:%POS %SAMPLE %DNM\\n]'\n"
"\n"
" # A complete example with a variant calling step. Note that this is one long\n"
" # command and should be on a single line. Also note that a filtering step is\n"
" # recommended, e.g. by depth and VAF (not shown here):\n"
" bcftools mpileup -a AD,QS -f ref.fa -Ou proband.bam father.bam mother.bam |\n"
" bcftools call -mv -Ou |\n"
" bcftools +trio-dnm2 -p proband,father,mother -Oz -o output.vcf.gz\n"
"\n";
}
static int cmp_trios(const void *_a, const void *_b)
{
trio_t *a = (trio_t *) _a;
trio_t *b = (trio_t *) _b;
int i;
int amin = a->idx[0];
for (i=1; i<3; i++)
if ( amin > a->idx[i] ) amin = a->idx[i];
int bmin = b->idx[0];
for (i=1; i<3; i++)
if ( bmin > b->idx[i] ) bmin = b->idx[i];
if ( amin < bmin ) return -1;
if ( amin > bmin ) return 1;
return 0;
}
static void parse_ped(args_t *args, char *fname)
{
htsFile *fp = hts_open(fname, "r");
if ( !fp ) error("Could not read: %s\n", fname);
kstring_t str = {0,0,0};
if ( hts_getline(fp, KS_SEP_LINE, &str) <= 0 ) error("Empty file: %s\n", fname);
int moff = 0, *off = NULL;
do
{
// familyID sampleID paternalID maternalID sex phenotype population relationship siblings secondOrder thirdOrder children comment
// BB03 HG01884 HG01885 HG01956 2 0 ACB child 0 0 0 0
int ncols = ksplit_core(str.s,0,&moff,&off);
if ( ncols<4 ) error("Could not parse the ped file: %s\n", str.s);
int father = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[2]]);
if ( father<0 ) continue;
int mother = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[3]]);
if ( mother<0 ) continue;
int child = bcf_hdr_id2int(args->hdr,BCF_DT_SAMPLE,&str.s[off[1]]);
if ( child<0 ) continue;
int sex = 0;
if ( ncols>=5 )
{
char *tmp;
sex = strtol(&str.s[off[4]],&tmp,10);
if ( tmp==&str.s[off[4]] || *tmp ) error("Could not parse the PED file, the 5th column should be numeric: %s\n",str.s);
if ( sex!=1 && sex!=2 ) sex = 0;
}
args->ntrio++;
hts_expand0(trio_t,args->ntrio,args->mtrio,args->trio);
trio_t *trio = &args->trio[args->ntrio-1];
trio->idx[iFATHER] = father;
trio->idx[iMOTHER] = mother;
trio->idx[iCHILD] = child;
trio->is_male = sex==1 ? 1 : 0;
}
while ( hts_getline(fp, KS_SEP_LINE, &str)>=0 );
// sort the sample by index so that they are accessed more or less sequentially
qsort(args->trio,args->ntrio,sizeof(trio_t),cmp_trios);
// check for duplicates
int i;
for (i=1; i<args->ntrio; i++)
{
trio_t *ta = &args->trio[i-1];
trio_t *tb = &args->trio[i];
if ( ta->idx[0]==tb->idx[0] && ta->idx[1]==tb->idx[1] && ta->idx[2]==tb->idx[2] )
error("Error: duplicate trio entries detected in the PED file: %s\n",fname);
}
fprintf(stderr,"Identified %d complete trio%s in the VCF file\n", args->ntrio,args->ntrio==1?"":"s");
free(str.s);
free(off);
if ( hts_close(fp)!=0 ) error("[%s] Error: close failed .. %s\n", __func__,fname);
}
static const uint8_t seq1[10] = {0,1,1,2,2,2,3,3,3,3};
static const uint8_t seq2[10] = {0,0,1,0,1,2,0,1,2,3};
static const int8_t seq3[13] = {-1,0,2,1,5,3,4,-1,9,6,7,-1,8}; // Lookup from (1<<ial)|(1<<jal) to iseq
typedef enum { include_ref, only_alts } count_unique_t;
static int count_unique_alleles(int ngt, int gt[3], count_unique_t count)
{
int i, als[4] = {0,0,0,0};
for (i=0; i<ngt; i++)
{
int igt = gt[i];
als[seq1[igt]] = 1;
als[seq2[igt]] = 1;
}
int nals = 0;
int ibeg = count==include_ref ? 0 : 1;
for (i=ibeg; i<4; i++) nals += als[i];
return nals;
}
// Parent genotype probability L(GM,GF)
// The FIGL model from the supplement "Variation in genome-wide mutation rates within and between human families",
// see also the actual implementation in https://github.com/ultimatesource/denovogear/blob/develop/src/dnm/makeLookup.cc
// This is the original method, including bugs in prior assignment.
static double init_DNG_mf_priors(args_t *args, int fi, int mi, int ci)
{
double gt_prior = 0; // parent genotype probability L(GM,GF)
int fa = seq1[fi];
int fb = seq2[fi];
int ma = seq1[mi];
int mb = seq2[mi];
int gts[3]; gts[0] = fi; gts[1] = mi; gts[2] = 0;
int nals_mf = count_unique_alleles(2,gts,include_ref);
int ca = seq1[ci];
int cb = seq2[ci];
gts[0] = fi; gts[1] = mi; gts[2] = ci;
int nals_mfc = count_unique_alleles(3,gts,include_ref);
int nref_mf = (fa==0 ? 1 : 0) + (fb==0 ? 1 : 0) + (ma==0 ? 1 : 0) + (mb==0 ? 1 : 0);
if ( nals_mfc>3 ) // 4 different alleles in the trio
gt_prior = 1e-26;
else if ( nals_mf>=3 ) // 3 different alleles in parents,
gt_prior = 0.002 * 0.002 / 414; // split equally amongst all triallelic cases
else if ( nals_mfc==3 ) // 3rd allele in the child
gt_prior = 1e-3 * 1e-3; // This is what g_PolyRate evaluates in DNG code
else if ( nref_mf==4 )
gt_prior = 0.995 * 0.998; // 4 copies of ref in parents
else if ( nref_mf==3 )
gt_prior = 0.995 * 0.002 * (3.0/5.0) * (4.0/5.0) * 0.5; // 3 copies of ref in parents
else if ( nref_mf==2 && fa==fb && ma==mb )
gt_prior = 0.995 * 0.002 * (2.0/5.0) * (1.0/5.0) * 0.5; // 2 copies of ref in parents, both homs
else if ( nref_mf==2 )
gt_prior = 0.995 * 0.002 * (2.0/5.0) * (2.0/5.0); // 2 copies of ref in parents, both hets
else if ( nref_mf==1 )
{
assert( nals_mf==2 && nals_mfc==2 );
gt_prior = 0.995 * 0.002 * (2.0/5.0) * (2.0/5.0) * 0.5; // 1 copy of ref in parents
}
else if ( nref_mf==0 )
{
if ( nals_mf==1 )
gt_prior = 0.995 * 0.002 * (3.0/5.0) * (1.0/5.0); // 1 alt allele in the trio
else if ( nals_mf==2 )
{
assert( ca!=0 && cb!=0 );
gt_prior = 0.002 * 0.002 / 414; // 2 alt alleles and 0 refs in the trio
}
else
error("Fixme: %s:%d\n",__FILE__,__LINE__);
}
else
error("Fixme: %s:%d\n",__FILE__,__LINE__);
return gt_prior;
}
// Parent genotype probability L(GM,GF), with DNG bugs fixed
static double init_mf_priors(args_t *args, int fi, int mi)
{
double gt_prior = 0; // parent genotype probability L(GM,GF)
int fa = seq1[fi];
int fb = seq2[fi];
int ma = seq1[mi];
int mb = seq2[mi];
int gts[3]; gts[0] = fi; gts[1] = mi; gts[2] = 0;
int nalt_mf = count_unique_alleles(2,gts,only_alts);
int nref_mf = (fa==0 ? 1 : 0) + (fb==0 ? 1 : 0) + (ma==0 ? 1 : 0) + (mb==0 ? 1 : 0);
const double p_homref = 0.998; // this assumes bi-allelic sites
const double p_poly = (1 - p_homref) * (1 - p_homref); // p of this occuring twice for a different allele
const double p_nonref = 1 - p_homref - p_poly;
if ( nalt_mf>=3 ) // penalize heavily sites with 3 unique ALTs
gt_prior = 1e-26;
else if ( nalt_mf>=2 ) // 2 unique ALTs, 19*3 = 57 cases
gt_prior = p_poly / 57.;
else if ( nref_mf==4 ) // 0 ALTs; 00,00
gt_prior = p_homref;
else if ( nref_mf==3 ) // this and all remaining have 1 unique ALT allele; 00,0x
gt_prior = p_nonref * (4.0/15.0) * (1.0/3.0);
else if ( nref_mf==2 && ma==mb ) // hom alt; 00,xx
gt_prior = p_nonref * (2.0/15.0) * (1.0/3.0);
else if ( nref_mf==2 ) // two hets; 0x,0x
gt_prior = p_nonref * (4.0/15.0) * (1.0/3.0);
else if ( nref_mf==1 ) // single ref; 0x,xx
gt_prior = p_nonref * (4.0/15.0) * (1.0/3.0);
else if ( nref_mf==0 ) // no ref; xx,xx
gt_prior = p_nonref * (1.0/15.0) * (1.0/3.0);
else
error("Fixme: %s:%d\n",__FILE__,__LINE__);
return gt_prior;
}
static double init_mf_priors_chrX(args_t *args, int mi)
{
double gt_prior = 0; // parent genotype probability L(GM)
int ma = seq1[mi];
int mb = seq2[mi];
int gts[3]; gts[0] = mi; gts[1] = 0; gts[2] = 0;
int nalt_m = count_unique_alleles(1,gts,only_alts);
int nref_m = (ma==0 ? 1 : 0) + (mb==0 ? 1 : 0);
const double p_homref = 0.999; // this assumes bi-allelic sites
const double p_poly = (1 - p_homref) * (1 - p_homref); // p of this occuring twice for a different allele
const double p_nonref = 1 - p_homref - p_poly;
if ( nalt_m>=2 ) // 2 unique ALTs, 3 cases
gt_prior = p_poly / 3.;
else if ( nref_m==2 ) // 00
gt_prior = p_homref;
else if ( nref_m==1 ) // single ref; 0x and x0
gt_prior = p_nonref * (2.0/3.0) * (1.0/3.0);
else if ( nref_m==0 ) // no ref; xx,xx
gt_prior = p_nonref * (1.0/3.0) * (1.0/3.0);
else
error("Fixme: %s:%d\n",__FILE__,__LINE__);
return gt_prior;
}
static double init_mf_priors_chrXX(args_t *args, int fi, int mi)
{
double gt_prior = 0; // parent genotype probability L(GM)
int fa = seq1[fi];
int fb = seq2[fi];
int ma = seq1[mi];
int mb = seq2[mi];
int gts[3]; gts[0] = fi; gts[1] = mi; gts[2] = 0;
int nalt_mf = count_unique_alleles(2,gts,only_alts);
int nref_mf = (fa==0 ? 1 : 0) + (fb==0 ? 1 : 0) + (ma==0 ? 1 : 0) + (mb==0 ? 1 : 0);
if ( fa!=fb ) return 0; // father can't be a het
if ( fa==0 ) nref_mf--;
else nalt_mf--;
const double p_homref = 0.998; // this assumes bi-allelic sites
const double p_poly = (1 - p_homref) * (1 - p_homref); // p of this occuring twice for a different allele
const double p_nonref = 1 - p_homref - p_poly;
if ( nalt_mf>=3 ) // 3 unique ALTs
gt_prior = 1e-26;
else if ( nalt_mf>=2 ) // 2 unique ALTs
gt_prior = p_poly * (1.0/9.0) * (1.0/3.0);
else if ( nref_mf==3 ) // 00,0
gt_prior = p_homref;
else if ( nref_mf==2 ) // 00,x; 0x,0; x0,0
gt_prior = p_nonref * (3.0/7.0) * (1.0/3.0);
else if ( nref_mf==1 ) // 0x,x; x0,x; xx,0
gt_prior = p_nonref * (3.0/7.0) * (1.0/3.0);
else if ( nref_mf==0 ) // no ref; xx,x
gt_prior = p_nonref * (1.0/7.0) * (1.0/3.0);
else
error("Fixme: %s:%d\n",__FILE__,__LINE__);
return gt_prior;
}
static void init_DNG_tprob_mprob(args_t *args, int fi, int mi, int ci, double *tprob, double *mprob, int *denovo_allele)
{
int fa = seq1[fi];
int fb = seq2[fi];
int ma = seq1[mi];
int mb = seq2[mi];
int gts[3]; gts[0] = fi; gts[1] = mi; gts[2] = 0;
int ca = seq1[ci];
int cb = seq2[ci];
gts[0] = fi; gts[1] = mi; gts[2] = ci;
int nals_mfc = count_unique_alleles(3,gts,include_ref);
*tprob = 1; // genotype transmission likelihood L(GC|GM,GF), 0 if not compatible with Mendelian inheritance
*mprob = 1 - args->mrate; // probability of mutation
*denovo_allele = ca!=fa && ca!=fb && ca!=ma && ca!=mb ? ca : cb;
if ( nals_mfc==4 )
*tprob = 0; // 4 unique alleles
else if ( nals_mfc==3 ) // 3 alleles
{
if ( ((ca==fa || ca==fb) && (cb==ma || cb==mb)) ||
((cb==fa || cb==fb) && (ca==ma || ca==mb)) )
{
if ( ca==cb ) *tprob = 0.25;
else if ( fa==fb || ma==mb ) *tprob = 0.5; // one parent is homozygous
else *tprob = 0.25;
}
else
{
if ( ca!=fa && ca!=fb && ca!=ma && ca!=mb &&
cb!=fa && cb!=fb && cb!=ma && cb!=mb ) *mprob = args->mrate * args->mrate; // two mutations
else
*mprob = args->mrate;
*tprob = 0;
}
}
else if ( nals_mfc==2 ) // 2 alleles
{
if ( fa!=fb && ma!=mb ) *tprob = 0.25; // both parents are hets
else if ( fa==fb && ma==mb ) // both parents are homs
{
if ( fa==ma && ca==cb ) *tprob = 0, *mprob = args->mrate * args->mrate; // parents same homs, child a hom, two alleles mutated
else if ( fa==ma ) *tprob = 0, *mprob = args->mrate; // parents same homs, child a het, one allele mutated
else if ( ca==cb ) *tprob = 0, *mprob = args->mrate; // parents diff homs, child a hom, one allele mutated
}
else if ( ca==cb && ((fa==fb && fa!=ca) || (ma==mb && ma!=ca)) )
*tprob = 0, *mprob = args->mrate; // child is (wrong) hom and one parent is hom
else
*tprob = 0.5;
}
}
static void init_tprob_mprob(args_t *args, int fi, int mi, int ci, double *tprob, double *mprob, int *denovo_allele)
{
int fa = seq1[fi];
int fb = seq2[fi];
int ma = seq1[mi];
int mb = seq2[mi];
int ca = seq1[ci];
int cb = seq2[ci];
*denovo_allele = ca!=fa && ca!=fb && ca!=ma && ca!=mb ? ca : cb;
// tprob .. genotype transmission probability L(GC|GM,GF), 0 if not compatible with Mendelian inheritance
// mprob .. probability of mutation
if ( ((ca==fa||ca==fb) && (cb==ma||cb==mb)) || ((ca==ma||ca==mb) && (cb==fa||cb==fb)) )
{
if ( fa==fb && ma==mb ) *tprob = 1;
else if ( fa==fb || ma==mb ) *tprob = 0.5;
else *tprob = 0.25;
*mprob = 1 - args->mrate;
}
else
{
*tprob = 0;
if ( (ca==fa||ca==fb) || (ca==ma||ca==mb) || (cb==fa||cb==fb) || (cb==ma||cb==mb) ) *mprob = args->mrate;
else *mprob = args->mrate * args->mrate;
}
}
static void init_tprob_mprob_chrX(args_t *args, int mi, int ci, double *tprob, double *mprob, int *denovo_allele)
{
int ma = seq1[mi];
int mb = seq2[mi];
int ca = seq1[ci];
int cb = seq2[ci];
*denovo_allele = ca!=ma && ca!=mb ? ca : cb;
if ( ca!=cb ) // male cannot be heterozygous in X
*mprob = 0, *tprob = 0;
else if ( ca==ma || ca==mb ) // inherited
{
if ( ma==mb ) *tprob = 1;
else *tprob = 0.5;
*mprob = 1 - args->mrate;
}
else // de novo
*mprob = args->mrate, *tprob = 0;
}
static void init_tprob_mprob_chrXX(args_t *args, int fi, int mi, int ci, double *tprob, double *mprob, int *denovo_allele)
{
int fa = seq1[fi];
int fb = seq2[fi];
int ma = seq1[mi];
int mb = seq2[mi];
int ca = seq1[ci];
int cb = seq2[ci];
*denovo_allele = ca!=fa && ca!=fb && ca!=ma && ca!=mb ? ca : cb;
if ( fa!=fb ) // father cannot be heterozygous in X
*mprob = 0, *tprob = 0;
else if ( (ca==fa && (cb==ma||cb==mb)) || (cb==fa && (ca==ma||ca==mb)) )
{
if ( ma==mb ) *tprob = 1;
else *tprob = 0.5;
*mprob = 1 - args->mrate;
}
else
{
*tprob = 0;
if ( (ca==fa || (ca==ma||ca==mb)) || (cb==fa || (cb==ma||cb==mb)) ) *mprob = args->mrate, *tprob = 0;
else *mprob = args->mrate * args->mrate;
}
}
typedef enum { autosomal, chrX, chrXX } init_priors_t;
static void init_priors(args_t *args, priors_t *priors, init_priors_t type)
{
// Based on the FIGL model from the supplement "Variation in genome-wide mutation rates within and between human families"
int fi,mi,ci;
for (fi=0; fi<10; fi++)
{
for (mi=0; mi<10; mi++)
{
for (ci=0; ci<10; ci++)
{
double gt_prior; // parent genotype probability L(GM,GF)
double tprob; // genotype transmission likelihood L(GC|GM,GF), 0 if not compatible with Mendelian inheritance
double mprob; // probability of mutation
int allele; // which of the alleles is de novo
if ( args->use_dng_priors )
gt_prior = init_DNG_mf_priors(args,fi,mi,ci);
else if ( type==autosomal )
gt_prior = init_mf_priors(args,fi,mi);
else if ( type==chrX )
gt_prior = init_mf_priors_chrX(args,mi);
else if ( type==chrXX )
gt_prior = init_mf_priors_chrXX(args,fi,mi);
else
error("Can't happen\n");
if ( args->use_dng_priors )
init_DNG_tprob_mprob(args,fi,mi,ci,&tprob,&mprob,&allele);
else if ( type==autosomal )
init_tprob_mprob(args,fi,mi,ci,&tprob,&mprob,&allele);
else if ( type==chrX )
init_tprob_mprob_chrX(args,mi,ci,&tprob,&mprob,&allele);
else if ( type==chrXX )
init_tprob_mprob_chrXX(args,fi,mi,ci,&tprob,&mprob,&allele);
else
error("Can't happen\n");
priors->denovo_allele[fi][mi][ci] = tprob==0 ? allele : UINT8_MAX; // the latter should never happen, making it fail deliberately
priors->denovo[fi][mi][ci] = tprob==0 ? 1 : 0;
priors->pprob[fi][mi][ci] = log(gt_prior * mprob * (tprob==0 ? 1 : tprob));
}
}
}
}
static void init_data(args_t *args)
{
if ( !args->dnm_score_tag )
{
if ( args->use_model==USE_NAIVE ) args->dnm_score_tag = strdup("DNM:flag");
else args->dnm_score_tag = strdup("DNM:log");
}
char *ptr = strchr(args->dnm_score_tag,':');
if ( ptr )
{
if ( ptr==args->dnm_score_tag ) error("Error: could not parse --dnm-tag %s\n",ptr);
*ptr = 0;
if ( !strcasecmp(ptr+1,"log") ) args->dnm_score_type = DNM_LOG;
else if ( !strcasecmp(ptr+1,"phred") ) args->dnm_score_type = DNM_PHRED;
else if ( !strcasecmp(ptr+1,"prob") ) args->dnm_score_type = DNM_PROB;
else if ( !strcasecmp(ptr+1,"flag") ) args->dnm_score_type = DNM_FLAG;
else error("Error: the type \"%s\" is not supported\n",ptr+1);
}
else
args->dnm_score_type = DNM_LOG;
if ( args->dnm_score_type==DNM_FLAG )
{
if ( !args->use_model ) args->use_model = USE_NAIVE;
else if ( args->use_model!=USE_NAIVE ) error("The output type FLAG can be used only with --use-NAIVE\n");
}
if ( args->use_model==USE_NAIVE )
{
if ( !args->dnm_score_type ) args->dnm_score_type = DNM_FLAG;
else if ( args->dnm_score_type!=DNM_FLAG ) error("The output type FLAG is required with --use-NAIVE\n");
}
if ( !args->use_model ) args->use_model = USE_ACM;
args->sr = bcf_sr_init();
if ( args->regions )
{
args->sr->require_index = 1;
bcf_sr_set_opt(args->sr,BCF_SR_REGIONS_OVERLAP,args->regions_overlap);
if ( bcf_sr_set_regions(args->sr, args->regions, args->regions_is_file)<0 ) error("Failed to read the regions: %s\n",args->regions);
}
if ( args->targets )
{
bcf_sr_set_opt(args->sr,BCF_SR_TARGETS_OVERLAP,args->targets_overlap);
if ( bcf_sr_set_targets(args->sr, args->targets, args->targets_is_file, 0)<0 ) error("Failed to read the targets: %s\n",args->targets);
}
if ( !bcf_sr_add_reader(args->sr,args->fname) ) error("Error: %s\n", bcf_sr_strerror(args->sr->errnum));
args->hdr = bcf_sr_get_header(args->sr,0);
if ( args->filter_str ) args->filter = filter_init(args->hdr, args->filter_str);
int id;
if ( args->use_model==USE_NAIVE )
{
if ( (id=bcf_hdr_id2int(args->hdr, BCF_DT_ID, "GT"))<0 || !bcf_hdr_idinfo_exists(args->hdr,BCF_HL_FMT,id) )
error("Error: the tag FORMAT/GT is not present in %s\n", args->fname);
}
else if ( (id=bcf_hdr_id2int(args->hdr, BCF_DT_ID, "PL"))<0 || !bcf_hdr_idinfo_exists(args->hdr,BCF_HL_FMT,id) )
error("Error: the tag FORMAT/PL is not present in %s\n", args->fname);
args->need_QS = ( args->use_model==USE_ACM && !args->with_ppl && !args->with_pad ) ? 1 : 0;
if ( args->need_QS && ((id=bcf_hdr_id2int(args->hdr, BCF_DT_ID, "QS"))<0 || !bcf_hdr_idinfo_exists(args->hdr,BCF_HL_FMT,id)) )
error(
"Error:\n"
" The FORMAT/QS tag is not present. If you want to proceed anyway, add either `--with-pAD` or\n"
" `--with-pPL` option, the latter at the cost of inflated false discovery rate. The QS annotation\n"
" can be generated at the mpileup step together with the AD annotation using the command\n"
" bcftools mpileup -a AD,QS -f ref.fa file.bam\n"); // Possible future todo: use AD as a proxy for QS?
if ( args->use_model!=USE_NAIVE )
{
if ( (id=bcf_hdr_id2int(args->hdr, BCF_DT_ID, "AD"))<0 || !bcf_hdr_idinfo_exists(args->hdr,BCF_HL_FMT,id) )
fprintf(stderr, "Warning: the tag FORMAT/AD is not present in %s, the output tag FORMAT/VAF will not be added\n", args->fname);
else
args->has_fmt_ad = 1;
if ( args->with_pad && !args->has_fmt_ad )
error("Error: no FORMAT/AD is present in %s, cannot run with --with-pAD\n", args->fname);
}
init_priors(args,&args->priors,autosomal);
init_priors(args,&args->priors_X,chrX);
init_priors(args,&args->priors_XX,chrXX);
args->hdr_out = bcf_hdr_dup(args->hdr);
char *type = NULL;
if ( args->dnm_score_type==DNM_LOG ) type = "log scaled value (bigger value = bigger confidence)";
if ( args->dnm_score_type==DNM_PHRED ) type = "phred value (bigger value = bigger confidence)";
if ( args->dnm_score_type==DNM_PROB ) type = "probability";
if ( args->dnm_score_type==DNM_FLAG ) type = "1 for Mendelian-incompatible genotypes";
bcf_hdr_printf(args->hdr_out, "##FORMAT=<ID=%s,Number=1,Type=%s,Description=\"De-novo mutation score given as %s\">",args->dnm_score_tag,(args->dnm_score_type&DNM_INT)?"Integer":"Float",type);
bcf_hdr_printf(args->hdr_out, "##FORMAT=<ID=%s,Number=1,Type=Integer,Description=\"The de-novo allele\">",args->dnm_allele_tag);
if ( args->has_fmt_ad )
bcf_hdr_printf(args->hdr_out, "##FORMAT=<ID=%s,Number=1,Type=Integer,Description=\"The percentage of ALT reads\">",args->dnm_vaf_tag);
int i, n = 0;
char **list;
if ( args->pfm )
{
args->ntrio = 1;
args->trio = (trio_t*) calloc(1,sizeof(trio_t));
list = hts_readlist(args->pfm, 0, &n);
if ( n!=3 ) error("Expected three sample names with -t\n");
args->trio[0].idx[iCHILD] = bcf_hdr_id2int(args->hdr, BCF_DT_SAMPLE, list[0]);
args->trio[0].idx[iFATHER] = bcf_hdr_id2int(args->hdr, BCF_DT_SAMPLE, list[1]);
args->trio[0].idx[iMOTHER] = bcf_hdr_id2int(args->hdr, BCF_DT_SAMPLE, list[2]);
if ( args->trio[0].idx[iCHILD] < 0 )
{
if ( strlen(list[0])>3 && !strncasecmp(list[0],"1X:",3) )
{
args->trio[0].idx[iCHILD] = bcf_hdr_id2int(args->hdr, BCF_DT_SAMPLE, list[0]+3);
args->trio[0].is_male = 1;
}
else if ( strlen(list[0])>3 && !strncasecmp(list[0],"2X:",3) )
args->trio[0].idx[iCHILD] = bcf_hdr_id2int(args->hdr, BCF_DT_SAMPLE, list[0]+3);
}
for (i=0; i<n; i++)
{
if ( args->trio[0].idx[i] < 0 ) error("The sample is not present: %s\n", list[i]);
free(list[i]);
}
free(list);
}
else
{
parse_ped(args,args->ped_fname);
if ( !args->ntrio ) error("No complete trio present\n");
}
if ( !args->chrX_list_str || !strcasecmp("GRCh37",args->chrX_list_str) )
args->chrX_list_str = "X:1-60000,chrX:1-60000,X:2699521-154931043,chrX:2699521-154931043";
else if ( !strcasecmp("GRCh38",args->chrX_list_str) )
args->chrX_list_str = "X:1-9999,chrX:1-9999,X:2781480-155701381,chrX:2781480-155701381";
char *rmme = strdup(args->chrX_list_str), *tmp = rmme;
while ( *tmp )
{
if ( *tmp==',' ) *tmp = '\n';
tmp++;
}
args->chrX_idx = regidx_init_string(rmme, regidx_parse_reg, NULL, 0, NULL);
free(rmme);
if ( args->record_cmd_line )
bcf_hdr_append_version(args->hdr_out, args->argc, args->argv, "bcftools_trio-dnm2");
char wmode[8];
set_wmode(wmode,args->output_type,args->output_fname,args->clevel);
args->out_fh = hts_open(args->output_fname ? args->output_fname : "-", wmode);
if ( args->out_fh == NULL ) error("Can't write to \"%s\": %s\n", args->output_fname, strerror(errno));
if ( bcf_hdr_write(args->out_fh, args->hdr_out)!=0 ) error("[%s] Error: cannot write to %s\n", __func__,args->output_fname);
if ( args->dnm_score_type & DNM_FLOAT )
args->dnm_qual_float = (float*) malloc(sizeof(*args->dnm_qual_float)*bcf_hdr_nsamples(args->hdr));
else
args->dnm_qual_int = (int32_t*) malloc(sizeof(*args->dnm_qual_int)*bcf_hdr_nsamples(args->hdr));
args->vaf = (int32_t*) malloc(sizeof(*args->vaf)*bcf_hdr_nsamples(args->hdr));
args->dnm_allele = (int32_t*) malloc(sizeof(*args->dnm_allele)*bcf_hdr_nsamples(args->hdr));
}
static void destroy_data(args_t *args)
{
if ( args->filter ) filter_destroy(args->filter);
regidx_destroy(args->chrX_idx);
free(args->dnm_score_tag);
free(args->dnm_vaf_tag);
free(args->dnm_allele_tag);
free(args->pl3);
free(args->alt_tmp);
free(args->alt_idx);
free(args->idx);
free(args->dnm_qual_int);
free(args->dnm_qual_float);
free(args->dnm_allele);
free(args->vaf);
free(args->trio);
free(args->gt);
free(args->pl);
free(args->ad);
free(args->qs);
free(args->qs3);
if ( hts_close(args->out_fh)!=0 ) error("[%s] Error: close failed .. %s\n", __func__,args->output_fname);
bcf_hdr_destroy(args->hdr_out);
bcf_sr_destroy(args->sr);
free(args);
}
static inline double phred2num(double phred)
{
return pow(10,-0.1*phred);
}
static inline double log2phred(double num)
{
return fabs(4.3429 * num);
}
static inline double phred2log(double phred)
{
return -phred/4.3429;
}
#if 0
static inline double subtract_num_log(double a_num, double b_log)
{
return log(a_num - exp(b_log));
}
#endif
static inline double subtract_log(double a_log, double b_log)
{
return a_log + log(1 - exp(b_log - a_log));
}
static inline double sum_log(double a, double b) // log(exp(a)+exp(b))
{
if ( a==-HUGE_VAL && b==-HUGE_VAL ) return -HUGE_VAL;
if ( a>b )
return log(1 + exp(b-a)) + a;
else
return log(1 + exp(a-b)) + b;
}
static double process_trio_ACM(args_t *args, priors_t *priors, int nals, double *pl[3], int npl, double *qs[3], int *al0, int *al1)
{
assert( nals>1 && nals<=4 );
*al0 = *al1 = 0;
double sum = -HUGE_VAL, max = -HUGE_VAL;
int i, ca,cb, fa,fb, ma,mb, ci=0;
for (ca=0; ca<nals; ca++)
{
for (cb=0; cb<=ca; cb++)
{
int cals = (1<<ca)|(1<<cb);
double cpl = pl[iCHILD][ci];
int fi = 0;
for (fa=0; fa<nals; fa++)
{
for (fb=0; fb<=fa; fb++)
{
int fals = (1<<fa)|(1<<fb);
double fpl;
if ( args->with_ppl ) fpl = pl[iFATHER][fi];
else
{
fpl = 0;
for (i=0; i<nals; i++)
{
if ( fals&(1<<i) )
fpl += subtract_log(0,qs[iFATHER][i]);
else if ( cals&(1<<i) )
fpl += qs[iFATHER][i];
else if ( fa==fb )
fpl += qs[iFATHER][i];
}
}
int mi = 0;
for (ma=0; ma<nals; ma++)
{
for (mb=0; mb<=ma; mb++)
{
int mals = (1<<ma)|(1<<mb);
double mpl = 0;
if ( args->with_ppl ) mpl = pl[iMOTHER][mi];
else
{
mpl = 0;
for (i=0; i<nals; i++)
{
if ( mals&(1<<i) )
mpl += subtract_log(0,qs[iMOTHER][i]);
else if ( cals&(1<<i) )
mpl += qs[iMOTHER][i];
else if ( ma==mb )
mpl += qs[iMOTHER][i];
}
}
double val = cpl + fpl + mpl + priors->pprob[fi][mi][ci];
sum = sum_log(sum,val);
#define DEBUG 0
#if DEBUG
if(val!=-HUGE_VAL)
fprintf(stderr,"m,f,c: %d%d+%d%d=%d%d dn=%d (%d,%d,%d) mpl,fpl,cpl: %+e %+e %+e \t prior:%+e \t pval=%+e sum=%+e %c\n",
mb,ma,fb,fa,cb,ca,priors->denovo[fi][mi][ci],fi,mi,ci,mpl,fpl,cpl,priors->pprob[fi][mi][ci], val,sum,(priors->denovo[fi][mi][ci] && max < val)?'*':'-');
#endif
if ( priors->denovo[fi][mi][ci] && max < val )
{
max = val;
if ( priors->denovo_allele[fi][mi][ci] == ca )
*al0 = cb, *al1 = ca;
else
*al0 = ca, *al1 = cb;
}
mi++;
}
}
fi++;
}
}
ci++;
}
}
#if DEBUG
fprintf(stderr,"max=%e sum=%e ret=%e\n",max,sum,max-sum);
#endif
return log2phred(subtract_log(0,max-sum));
}
static double process_trio_DNG(args_t *args, priors_t *priors, int nals, double *pl[3], int npl, int *al0, int *al1)
{
assert( nals>1 && nals<=4 );
*al0 = *al1 = 0;
double sum = -HUGE_VAL, max = -HUGE_VAL;
int ca,cb, fa,fb, ma,mb, ci=0;
for (ca=0; ca<nals; ca++)
{
for (cb=0; cb<=ca; cb++)
{
int fi = 0;
for (fa=0; fa<nals; fa++)
{
for (fb=0; fb<=fa; fb++)
{
int mi = 0;
for (ma=0; ma<nals; ma++)
{
for (mb=0; mb<=ma; mb++)
{
double val;
val = pl[iCHILD][ci] + pl[iFATHER][fi] + pl[iMOTHER][mi] + priors->pprob[fi][mi][ci];
sum = sum_log(val,sum);
#if DEBUG
if(val!=-HUGE_VAL)
fprintf(stderr,"m,f,c: %d%d+%d%d=%d%d dn=%d (%d,%d,%d) mpl,fpl,cpl: %+e %+e %+e \t prior:%+e \t pval=%+e sum=%+e %c\n",
mb,ma,fb,fa,cb,ca,priors->denovo[fi][mi][ci],fi,mi,ci,pl[iMOTHER][mi],pl[iFATHER][fi],pl[iCHILD][ci],priors->pprob[fi][mi][ci], val,sum,(priors->denovo[fi][mi][ci] && max < val)?'*':'-');
#endif
if ( priors->denovo[fi][mi][ci] && max < val )
{
max = val;
if ( priors->denovo_allele[fi][mi][ci] == ca )
*al0 = cb, *al1 = ca;
else
*al0 = ca, *al1 = cb;
}
mi++;
}
}
fi++;
}
}
ci++;
}
}
#if DEBUG
fprintf(stderr,"max=%e sum=%e ret=%e\n",max,sum,max-sum);
#endif
return log2phred(subtract_log(0,max-sum));
}
static int process_trio_naive(args_t *args, priors_t *priors, int nals, int32_t gts[3], int *denovo_allele)
{
int fi = seq3[gts[iFATHER]];
int mi = seq3[gts[iMOTHER]];
int ci = seq3[gts[iCHILD]];
assert( fi!=-1 && mi!=-1 && ci!=-1 );
*denovo_allele = priors->denovo_allele[fi][mi][ci];
return priors->denovo[fi][mi][ci];
}
static int test_filters(args_t *args, bcf1_t *rec)
{
uint8_t *smpl_pass;
int i,j, pass_site = filter_test(args->filter, rec, (const uint8_t**) &smpl_pass);
if ( args->filter_logic & FLT_EXCLUDE )
{
if ( pass_site )
{
if ( !smpl_pass ) return 0; // no samples, -e mode, the expression failed
pass_site = 0;
for (i=0; i<args->ntrio; i++)
{
int pass_trio = 1;
for (j=0; j<3; j++)
{
int idx = args->trio[i].idx[j];
if ( smpl_pass[idx] ) { pass_trio = 0; break; } // with -e one sample passes, the whole trio fails
}
args->trio[i].pass = pass_trio;
if ( pass_trio ) pass_site = 1;
}
return pass_site;
}
for (i=0; i<args->ntrio; i++) args->trio[i].pass = 1;
return 1;
}
if ( !pass_site ) return 0;
if ( smpl_pass )
{
pass_site = 0;
for (i=0; i<args->ntrio; i++)
{
int pass_trio = 1;
for (j=0; j<3; j++)
{
int idx = args->trio[i].idx[j];
if ( !smpl_pass[idx] ) { pass_trio = 0; break; }
}
args->trio[i].pass = pass_trio;
if ( pass_trio ) pass_site = 1;
}
return pass_site;
}
for (i=0; i<args->ntrio; i++) args->trio[i].pass = 1;
return 1;
}
static void many_alts_trim(args_t *args, int *_nals, double *pl[3], int *_npl, double *qs[3])
{
assert(*_nals > 4);
// Find the most likely set of alleles from FORMAT/QS
int nals = *_nals;
hts_expand(int,nals,args->malt_idx,args->alt_idx);
hts_expand(double,nals,args->malt_tmp,args->alt_tmp);
hts_expand(double,10,args->malt_tmp,args->alt_tmp);
memset(args->alt_tmp,0,sizeof(*args->alt_tmp)*nals);
int i,j,k;
for (i=0; i<3; i++)
for (j=0; j<nals; j++) args->alt_tmp[j] += qs[i][j];
// sort in ascending order, make REF allele always come first; insertion sort
double *arr = args->alt_tmp;
int tmp, *idx = args->alt_idx;
for (i=0; i<nals; i++) idx[i] = i;
for (i=2; i<nals; i++)
for (j=i; j>1 && arr[idx[j]] < arr[idx[j-1]]; j--)
tmp = idx[j], idx[j] = idx[j-1], idx[j-1] = tmp;
for (i=0; i<3; i++)
{
for (j=0; j<4; j++) args->alt_tmp[j] = qs[i][args->alt_idx[j]];
memcpy(qs[i],args->alt_tmp,4*sizeof(*args->alt_tmp));
}
for (i=0; i<3; i++)
{
for (j=0; j<4; j++)
for (k=0; k<=j; k++)
{
int idst = bcf_alleles2gt(j,k);
int isrc = bcf_alleles2gt(args->alt_idx[j],args->alt_idx[k]);
args->alt_tmp[idst] = pl[i][isrc];
}
memcpy(pl[i],args->alt_tmp,10*sizeof(*args->alt_tmp));
}
*_nals = 4;
*_npl = 10;
}
static void many_alts_translate(args_t *args, int *al0, int *al1)
{
*al0 = args->alt_idx[*al0];
*al1 = args->alt_idx[*al1];
}
static void set_trio_PL(args_t *args, trio_t *trio, double *ppl[3], int npl1)
{
int j,k;
for (j=0; j<3; j++) // j loops over iFATHER,iMOTHER,iCHILD
{
int32_t *src = args->pl + npl1 * trio->idx[j];
double *dst = ppl[j] = args->pl3 + j*npl1;
double sum = 0;
for (k=0; k<npl1; k++) { dst[k] = phred2num(src[k]); sum += dst[k]; }
for (k=0; k<npl1; k++) dst[k] = log(dst[k]/sum);
}
}
static void set_trio_QS(args_t *args, trio_t *trio, double *pqs[3], int nqs1)
{
int j,k;
for (j=0; j<3; j++) // j loops over iFATHER,iMOTHER,iCHILD
{
int32_t *qs = args->qs + nqs1 * trio->idx[j];
double *dst = pqs[j] = args->qs3 + j*nqs1;
for (k=0; k<nqs1; k++) dst[k] = phred2log(qs[k]);
}
}
static void set_trio_QS_noisy(args_t *args, trio_t *trio, double *pqs[3], int nqs1, int n_ad)
{
int32_t *ad_f = NULL, *ad_m = NULL; // AD in father and mother
if ( n_ad && !args->pn_abs && !args->pns_abs && !args->pns_frac ) n_ad = 0; // AD is not required
if ( n_ad )
{
// Noise tolerance will be applied only for alleles observed in a single parent (a possible mosaic
// variant in the parent) but not for alleles observed in both parents (likely an artefact)
ad_f = args->ad + n_ad * trio->idx[iFATHER];
ad_m = args->ad + n_ad * trio->idx[iMOTHER];
}
int j,k;
for (j=0; j<3; j++)
{
int32_t *ad = n_ad ? args->ad + n_ad * trio->idx[j] : NULL;
int32_t *qs = args->qs + nqs1 * trio->idx[j];
pqs[j] = args->qs3 + j*nqs1;
double pn = 0, pns = 0;
double sum_qs = 0, sum_ad = 0;
if ( (args->pn_frac || args->pns_frac) && j!=iCHILD )
{
for (k=0; k<nqs1; k++) sum_qs += qs[k];
pn = sum_qs * args->pn_frac;
pns = sum_qs * args->pns_frac;
if ( n_ad )
{
// "absolute" threshold: find the average QS per read from AD and use that
// if bigger than the relative threshold
for (k=0; k<n_ad; k++) sum_ad += ad[k];
if ( pn < args->pn_abs * sum_qs / sum_ad ) pn = args->pn_abs * sum_qs / sum_ad;
if ( pns < args->pns_abs * sum_qs / sum_ad ) pns = args->pns_abs * sum_qs / sum_ad;
}
}
// Reduce QS for all alleles to account for noise
for (k=0; k<nqs1; k++)
{
double val = qs[k];
if ( n_ad && (!ad_f[k] || !ad_m[k]) ) val -= pns;
else val -= pn;
if ( val < 0 ) val = 0;
pqs[j][k] = phred2log(val);
}
#if 0
// The original code, don't like the capping at 255
// Reduce QS for all alleles to account for noise
for (k=0; k<nqs1; k++)
{
double val = qs[k];
if ( !args->pnoise_strict || !ad_f[k] || !ad_m[k] ) val -= noise_tolerance;
if ( val < 0 ) val = 0;
if ( val > 255 ) val = 255;
pqs[j][k] = phred2log(val);
}
#endif
#if 0
// None of this worked better
double max_qs = 0;
for (k=0; k<nqs1; k++)
{
double tmp = qs[k];
if ( max_qs < tmp ) max_qs = tmp;
}
for (k=0; k<nqs1; k++)
{
// This uses absolute value of parental QS, does not regard the depth. The penalty is way too
// strict for high-coverage sites, random parental sequencing errors there are very likely.
// Puts trio-dnm.40.vcf at -24,-17, which is too strict.
// pqs[j][k] = phred2log(qs[k]);
// Proportions in log space are not well motivated and does not work well.
// Puts trio-dnm.40.vcf at -9,-13 which is too strict
// pqs[j][k] = phred2log(255*(qs[k]/max_qs));
// This seems too lenient for 1/10 alts (-4.26326e-14) and feeds -inf,0,0 to everything.
// double tmp = max_qs - qs[k];
// pqs[j][k] = log(1 - exp(phred2log(tmp)));
}
#endif
}
}
static int set_trio_GT(args_t *args, trio_t *trio, int32_t gts[3], int ngts, int ignore_father)
{
int j,k;
for (j=0; j<3; j++) // iFATHER,iMOTHER,iCHILD
{
int32_t *src = args->gt + ngts * trio->idx[j];
for (k=0; k<ngts; k++)
{
int ial = src[k];
if ( ial==bcf_int32_vector_end ) break;
if ( bcf_gt_is_missing(ial) )
{
if ( j!=iFATHER || !ignore_father ) return -1;
ial = 0; // can be anything, will not be used
}
else
ial = bcf_gt_allele(ial);
gts[j] |= 1 << ial;
assert(gts[j]>0 && gts[j]<13);
}
if ( !gts[j] && (j!=iFATHER || !ignore_father) ) return -1;
}
return 0;
}
static int set_trio_GT_many_alts(args_t *args, trio_t *trio, int32_t gts[3], int ngts, int nals, int ignore_father)
{
int i,j,k, nused = 0;
hts_expand(int,nals,args->malt_idx,args->alt_idx);
for (i=0; i<nals; i++) args->alt_idx[i] = -1;
for (j=0; j<3; j++) // iFATHER,iMOTHER,iCHILD
{
int32_t *src = args->gt + ngts * trio->idx[j];
for (k=0; k<ngts; k++)
{
int ial = src[k];
if ( ial==bcf_int32_vector_end ) break;
if ( bcf_gt_is_missing(ial) )
{
if ( j!=iFATHER || !ignore_father ) return -1;
ial = 0; // can be anything, will not be used
}
else
ial = bcf_gt_allele(ial);
if ( ial >= nals ) error("Error: FMT/GT contains incorrect allele \"%d\" at a site with %d alleles\n",ial,nals);
if ( args->alt_idx[ial]==-1 )
{
args->alt_idx[ial] = nused++;
if ( nused > 4 ) return -1;
}
gts[j] |= 1<<args->alt_idx[ial];
assert(gts[j]>0 && gts[j]<13);
}
if ( !gts[j] ) return -1;
}
return 0;
}
static void process_record_naive(args_t *args, bcf1_t *rec)
{
int nsmpl = bcf_hdr_nsamples(args->hdr);
int ngts = bcf_get_genotypes(args->hdr,rec,&args->gt,&args->mgt);
if ( ngts<=0 || ngts==nsmpl )
{
if ( bcf_write(args->out_fh, args->hdr_out, rec)!=0 ) error("[%s] Error: cannot write to %s\n", __func__,args->output_fname);
return;
}
ngts /= nsmpl;
if ( ngts!=2 ) error("todo: ploidy>2\n");
int is_chrX = 0;
if ( regidx_overlap(args->chrX_idx,bcf_seqname(args->hdr,rec),rec->pos,rec->pos+rec->rlen,NULL) ) is_chrX = 1;
int i, write_dnm = 0;
for (i=0; i<nsmpl; i++) args->dnm_qual_int[i] = bcf_int32_missing;
for (i=0; i<nsmpl; i++) args->dnm_allele[i] = bcf_int32_missing;
for (i=0; i<args->ntrio; i++)
{
if ( args->filter && !args->trio[i].pass ) continue;
int ignore_father = 0; // father is irrelevant for male proband on chrX and can have missing GT
priors_t *priors;
if ( !is_chrX ) priors = &args->priors;
else if ( args->trio[i].is_male ) priors = &args->priors_X, ignore_father = 1;
else priors = &args->priors_XX;
int32_t gts[3] = {0,0,0};
int ret = rec->n_allele<=4 ? set_trio_GT(args,&args->trio[i],gts,ngts,ignore_father) : set_trio_GT_many_alts(args,&args->trio[i],gts,ngts,rec->n_allele,ignore_father);
if ( ret<0 ) continue;
int dnm_allele;
double is_dnm = process_trio_naive(args, priors, rec->n_allele, gts, &dnm_allele);
args->dnm_qual_int[ args->trio[i].idx[iCHILD] ] = is_dnm;
args->dnm_allele[ args->trio[i].idx[iCHILD] ] = dnm_allele;
if ( is_dnm ) write_dnm = 1;
}
if ( write_dnm )
{
int ret = bcf_update_format_int32(args->hdr_out,rec,args->dnm_score_tag,args->dnm_qual_int,nsmpl);
if ( ret )
error("Failed to write FORMAT/%s at %s:%"PRId64"\n", args->dnm_score_tag, bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1);
ret = bcf_update_format_int32(args->hdr_out,rec,args->dnm_allele_tag,args->dnm_allele,nsmpl);
if ( ret )
error("Failed to write FORMAT/%s at %s:%"PRId64"\n", args->dnm_allele_tag,bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1);
}
if ( bcf_write(args->out_fh, args->hdr_out, rec)!=0 )
error("[%s] Error: cannot write to %s at %s:%"PRId64"\n", __func__,args->output_fname,bcf_seqname(args->hdr,rec),(int64_t)rec->pos+1);
}
static void process_record(args_t *args, bcf1_t *rec)
{
int skip_site = 0;
if ( rec->n_allele==1 || bcf_get_variant_types(rec)==VCF_REF ) skip_site = 1;
else if ( args->filter && !test_filters(args,rec) ) skip_site = 1;
if ( skip_site )
{
if ( bcf_write(args->out_fh, args->hdr_out, rec)!=0 ) error("[%s] Error: cannot write to %s\n", __func__,args->output_fname);
return;
}
if ( args->use_model==USE_NAIVE )
{
process_record_naive(args, rec);
return;
}
static int n_ad_warned = 0;
int nret, nsmpl = bcf_hdr_nsamples(args->hdr), n_ad = args->has_fmt_ad;
if ( n_ad )
{
nret = bcf_get_format_int32(args->hdr,rec,"AD",&args->ad,&args->mad);
if ( nret<=0 ) n_ad = 0;
else
{
n_ad = nret / nsmpl;
if ( nret != nsmpl * rec->n_allele )
{
if ( !n_ad_warned )
{
hts_log_warning("Incorrect number of fields for FORMAT/AD at %s:%"PRId64". This warning is printed only once", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1);
n_ad_warned = 1;
}
if ( !args->force_ad ) n_ad = 0;
}
}
}
nret = bcf_get_format_int32(args->hdr,rec,"PL",&args->pl,&args->mpl);
if ( nret<=0 ) error("The FORMAT/PL tag not present at %s:%"PRId64"\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1);
int npl1 = nret/nsmpl;
if ( npl1!=rec->n_allele*(rec->n_allele+1)/2 )
error("todo: not a diploid site at %s:%"PRId64": %d alleles, %d PLs\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,rec->n_allele,npl1);
hts_expand(double,3*npl1,args->mpl3,args->pl3);
int i,j, nqs1 = 0;
if ( args->use_model==USE_ACM || rec->n_allele > 4 ) // DNG does not use QS, but QS is needed when trimming ALTs
{
nret = bcf_get_format_int32(args->hdr,rec,"QS",&args->qs,&args->mqs);
if ( nret<0 )
{
if ( args->need_QS )
error("Error: the FMT/QS tag is not available at %s:%"PRId64".\n",bcf_seqname(args->hdr,rec),(int64_t)rec->pos+1);
if ( n_ad==0 )
{
static int missing_AD_warned = 0;
if ( !missing_AD_warned )
{
hts_log_warning(
"Neither FMT/QS nor FMT/AD present at %s:%"PRId64", cannot trim the number of alleles to four, skipping.\n"
"This warning is printed only once", bcf_seqname(args->hdr,rec),(int64_t)rec->pos+1);
missing_AD_warned = 1;
}
return;
}
// fake QS from AD assuming average BQ=30
nret = n_ad * nsmpl;
hts_expand(int32_t,nret,args->mqs,args->qs);
for (i=0; i<nret; i++)
{
if ( args->ad[i]==bcf_int32_missing || args->ad[i]==bcf_int32_vector_end ) args->qs[i] = args->ad[i];
else args->qs[i] = 30 * args->ad[i];
}
}
else if ( nret != nsmpl * rec->n_allele )
error("Error: incorrect number of FMT/QS values at %s:%"PRId64".\n",bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1);
nqs1 = nret<=0 ? 0 : nret/nsmpl;
hts_expand(double,3*nqs1,args->mqs3,args->qs3);
}
int is_chrX = 0;
if ( regidx_overlap(args->chrX_idx,bcf_seqname(args->hdr,rec),rec->pos,rec->pos+rec->rlen,NULL) ) is_chrX = 1;
int al0, al1, write_dnm = 0, ad_set = 0;
if ( args->dnm_score_type & DNM_FLOAT )
for (i=0; i<nsmpl; i++) bcf_float_set_missing(args->dnm_qual_float[i]);
else
for (i=0; i<nsmpl; i++) args->dnm_qual_int[i] = bcf_int32_missing;
for (i=0; i<nsmpl; i++) args->dnm_allele[i] = bcf_int32_missing;
for (i=0; i<args->ntrio; i++)
{
if ( args->filter && !args->trio[i].pass ) continue;
// Samples can be in any order in the VCF, set PL and QS to reflect the iFATHER,iMOTHER,iCHILD indices
double *ppl[3];
set_trio_PL(args,&args->trio[i],ppl,npl1);
double *pqs[3];
if ( args->use_model==USE_ACM )
set_trio_QS_noisy(args,&args->trio[i],pqs,nqs1,n_ad);
else if ( rec->n_allele > 4 ) // DNG does not use QS, but QS is needed when trimming ALTs
set_trio_QS(args,&args->trio[i],pqs,nqs1);
priors_t *priors;
if ( !is_chrX ) priors = &args->priors;
else if ( args->trio[i].is_male ) priors = &args->priors_X;
else priors = &args->priors_XX;
int nals = rec->n_allele;
if ( rec->n_allele > 4 ) many_alts_trim(args, &nals,ppl,&npl1,pqs);
double score;
if ( args->use_model==USE_ACM ) score = process_trio_ACM(args, priors, nals, ppl, npl1, pqs, &al0, &al1);
else if ( args->use_model==USE_DNG ) score = process_trio_DNG(args, priors, nals, ppl, npl1, &al0, &al1);
else error("Uh, this should not happen\n");
if ( rec->n_allele > 4 ) many_alts_translate(args, &al0, &al1);
if ( score >= args->min_score )
{
write_dnm = 1;
if ( args->dnm_score_type==DNM_LOG )
args->dnm_qual_float[ args->trio[i].idx[iCHILD] ] = score==HUGE_VAL ? 0 : subtract_log(0,phred2log(score));
else if ( args->dnm_score_type==DNM_PROB )
args->dnm_qual_float[ args->trio[i].idx[iCHILD] ] = score==HUGE_VAL ? 1 : 1 - phred2num(score);
else
{
if ( score>255 ) score = 255;
args->dnm_qual_int[ args->trio[i].idx[iCHILD] ] = round(score);
}
args->dnm_allele[ args->trio[i].idx[iCHILD] ] = al1;
}
if ( n_ad )
{
if ( al1 < n_ad )
{
ad_set = 1;
for (j=0; j<3; j++)
{
int32_t *src = args->ad + n_ad * args->trio[i].idx[j];
int k, ad_sum = 0;
for (k=0; k<rec->n_allele; k++) ad_sum += src[k];
args->vaf[ args->trio[i].idx[j] ] = ad_sum ? round(src[al1]*100./ad_sum) : 0;
}
}
else
for (j=0; j<3; j++) args->vaf[ args->trio[i].idx[j] ] = bcf_int32_missing;
}
}
if ( write_dnm )
{
int ret;
if ( args->dnm_score_type & DNM_FLOAT )
ret = bcf_update_format_float(args->hdr_out,rec,args->dnm_score_tag,args->dnm_qual_float,nsmpl);
else
ret = bcf_update_format_int32(args->hdr_out,rec,args->dnm_score_tag,args->dnm_qual_int,nsmpl);
if ( ret )
error("Failed to write FORMAT/%s at %s:%"PRId64"\n", args->dnm_score_tag, bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1);
ret = bcf_update_format_int32(args->hdr_out,rec,args->dnm_allele_tag,args->dnm_allele,nsmpl);
if ( ret )
error("Failed to write FORMAT/%s at %s:%"PRId64"\n", args->dnm_allele_tag,bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1);
if ( ad_set )
{
if ( bcf_update_format_int32(args->hdr_out,rec,args->dnm_vaf_tag,args->vaf,nsmpl)!=0 )
error("Failed to write FORMAT/%s at %s:%"PRId64"\n", args->dnm_vaf_tag,bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1);
}
}
if ( bcf_write(args->out_fh, args->hdr_out, rec)!=0 ) error("[%s] Error: cannot write to %s at %s:%"PRId64"\n", __func__,args->output_fname,bcf_seqname(args->hdr,rec),(int64_t)rec->pos+1);
}
static void set_option(args_t *args, char *optarg)
{
static int warn_deprecated = 1;
if ( warn_deprecated )
{
fprintf(stderr,"Note: the `-u, --use` option will be deprecated in future releases.\n");
warn_deprecated = 0;
}
char *tmp;
char *opt = strdup(optarg);
char *val = strchr(opt,'=');
if ( val ) { *val = 0; val++; }
if ( !strcasecmp(opt,"mrate") )
{
if ( !val ) error("Error: expected value with -u mrate, e.g. -u mrate=1e-8\n");
args->mrate = strtod(val,&tmp);
if ( *tmp ) error("Could not parse: -u %s\n", optarg);
}
else if ( !strcasecmp(opt,"pn") || !strcasecmp(opt,"pnoise") )
{
if ( !val ) error("Error: expected value with -u %s, e.g. -u %s=0.05\n",opt,opt);
args->pn_frac = strtod(val,&tmp);
if ( *tmp && *tmp==',' )
{
args->pn_abs = strtod(tmp+1,&tmp);
if ( *tmp ) error("Could not parse: -u %s\n", optarg);
}
if ( args->pn_frac<0 || args->pn_frac>1 ) error("Error: expected value from the interval [0,1] for -u %s\n", optarg);
if ( args->pn_abs<0 ) error("Error: expected positive value for -u %s\n", optarg);
}
else if ( !strcasecmp(opt,"pns") )
{
if ( !val ) error("Error: expected value with -u %s, e.g. -u %s=0.05\n",opt,opt);
args->pns_frac = strtod(val,&tmp);
if ( *tmp && *tmp==',' )
{
args->pns_abs = strtod(tmp+1,&tmp);
if ( *tmp ) error("Could not parse: -u %s\n", optarg);
}
if ( args->pns_frac<0 || args->pn_frac>1 ) error("Error: expected value from the interval [0,1] for -u %s\n", optarg);
if ( args->pns_abs<0 ) error("Error: expected positive value for -u %s\n", optarg);
}
else if ( !strcasecmp(opt,"DNG") ) { args->use_model = USE_DNG; args->use_dng_priors = 1; }
else if ( !strcasecmp(opt,"dng-priors") ) args->use_dng_priors = 1;
else if ( !strcasecmp(opt,"ppl") ) args->with_ppl = 1;
else if ( !strcasecmp(opt,"tag") )
{
if ( !val ) error("Error: expected value with -u tag, e.g. -u tag=ANN\n");
free(args->dnm_score_tag);
args->dnm_score_tag = strdup(val);
}
else if ( !strcasecmp(opt,"vaf") )
{
if ( !val ) error("Error: expected value with -u vaf, e.g. -u vaf=VAF\n");
free(args->dnm_vaf_tag);
args->dnm_vaf_tag = strdup(val);
}
else if ( !strcasecmp(opt,"va") )
{
if ( !val ) error("Error: expected value with -u va, e.g. -u va=VA\n");
free(args->dnm_allele_tag);
args->dnm_allele_tag = strdup(val);
}
else error("Error: the option \"-u %s\" is not recognised\n",optarg);
free(opt);
}
int run(int argc, char **argv)
{
args_t *args = (args_t*) calloc(1,sizeof(args_t));
args->argc = argc; args->argv = argv;
args->output_fname = "-";
args->dnm_vaf_tag = strdup("VAF");
args->dnm_allele_tag = strdup("VA");
args->mrate = 1e-8;
args->pn_frac = 0.005;
args->pn_abs = 0;
args->pns_frac = 0.045;
args->pns_abs = 0;
args->record_cmd_line = 1;
args->regions_overlap = 1;
args->targets_overlap = 0;
args->clevel = -1;
static struct option loptions[] =
{
{"use",required_argument,0,'u'},
{"force-AD",no_argument,0,1},
{"dnm-tag",required_argument,0,2},
{"va",required_argument,0,3},
{"vaf",required_argument,0,4},
{"dng-priors",no_argument,0,5},
{"mrate",required_argument,0,6},
{"pn",required_argument,0,7},
{"pns",required_argument,0,8},
{"use-DNG",no_argument,0,9},
{"ppl",no_argument,0,10},
{"with-pPL",no_argument,0,10},
{"with-ppl",no_argument,0,10},
{"use-NAIVE",no_argument,0,11},
{"no-version",no_argument,NULL,12},
{"with-pAD",no_argument,0,13},
{"with-pad",no_argument,0,13},
{"chrX",required_argument,0,'X'},
{"min-score",required_argument,0,'m'},
{"include",required_argument,0,'i'},
{"exclude",required_argument,0,'e'},
{"output",required_argument,NULL,'o'},
{"output-type",required_argument,NULL,'O'},
{"ped",required_argument,NULL,'P'},
{"pfm",required_argument,NULL,'p'},
{"regions",1,0,'r'},
{"regions-file",1,0,'R'},
{"regions-overlap",required_argument,NULL,14},
{"targets",1,0,'t'},
{"targets-file",1,0,'T'},
{"targets-overlap",required_argument,NULL,15},
{NULL,0,NULL,0}
};
int c;
char *tmp;
while ((c = getopt_long(argc, argv, "p:P:o:O:s:i:e:r:R:t:T:m:au:X:",loptions,NULL)) >= 0)
{
switch (c)
{
case 1 : args->force_ad = 1; break;
case 2 : free(args->dnm_score_tag); args->dnm_score_tag = strdup(optarg); break;
case 3 : free(args->dnm_allele_tag); args->dnm_allele_tag = strdup(optarg); break;
case 4 : free(args->dnm_vaf_tag); args->dnm_vaf_tag = strdup(optarg); break;
case 5 : args->use_dng_priors = 1; break;
case 6 : args->mrate = strtod(optarg,&tmp); if ( *tmp ) error("Could not parse: --mrate %s\n", optarg); break;
case 7 :
args->pn_frac = strtod(optarg,&tmp);
if ( *tmp && *tmp==',' )
{
args->pn_abs = strtod(tmp+1,&tmp);
if ( *tmp ) error("Could not parse: --pn %s\n", optarg);
}
if ( args->pn_frac<0 || args->pn_frac>1 ) error("Error: expected value from the interval [0,1] for --pn %s\n", optarg);
if ( args->pn_abs<0 ) error("Error: expected positive value for --pn %s\n", optarg);
break;
case 8 :
args->pns_frac = strtod(optarg,&tmp);
if ( *tmp && *tmp==',' )
{
args->pns_abs = strtod(tmp+1,&tmp);
if ( *tmp ) error("Could not parse: --pns %s\n", optarg);
}
if ( args->pns_frac<0 || args->pns_frac>1 ) error("Error: expected value from the interval [0,1] for --pns %s\n", optarg);
if ( args->pns_abs<0 ) error("Error: expected positive value for --pns %s\n", optarg);
break;
case 9 : args->use_model = USE_DNG; args->use_dng_priors = 1; break;
case 10 : args->with_ppl = 1; break;
case 11 : args->use_model = USE_NAIVE; break;
case 12 : args->record_cmd_line = 0; break;
case 13 : args->with_pad = 1; break;
case 14 :
args->regions_overlap = parse_overlap_option(optarg);
if ( args->regions_overlap < 0 ) error("Could not parse: --regions-overlap %s\n",optarg);
break;
case 15 :
args->targets_overlap = parse_overlap_option(optarg);
if ( args->targets_overlap < 0 ) error("Could not parse: --targets-overlap %s\n",optarg);
break;
case 'X': args->chrX_list_str = optarg; break;
case 'u': set_option(args,optarg); break;
case 'e':
if ( args->filter_str ) error("Error: only one -i or -e expression can be given, and they cannot be combined\n");
args->filter_str = optarg; args->filter_logic |= FLT_EXCLUDE; break;
case 'i':
if ( args->filter_str ) error("Error: only one -i or -e expression can be given, and they cannot be combined\n");
args->filter_str = optarg; args->filter_logic |= FLT_INCLUDE; break;
case 't': args->targets = optarg; break;
case 'T': args->targets = optarg; args->targets_is_file = 1; break;
case 'r': args->regions = optarg; break;
case 'R': args->regions = optarg; args->regions_is_file = 1; break;
case 'o': args->output_fname = optarg; break;
case 'O':
switch (optarg[0]) {
case 'b': args->output_type = FT_BCF_GZ; break;
case 'u': args->output_type = FT_BCF; break;
case 'z': args->output_type = FT_VCF_GZ; break;
case 'v': args->output_type = FT_VCF; break;
default:
{
args->clevel = strtol(optarg,&tmp,10);
if ( *tmp || args->clevel<0 || args->clevel>9 ) error("The output type \"%s\" not recognised\n", optarg);
}
};
if ( optarg[1] )
{
args->clevel = strtol(optarg+1,&tmp,10);
if ( *tmp || args->clevel<0 || args->clevel>9 ) error("Could not parse argument: --compression-level %s\n", optarg+1);
}
break;
case 'P': args->ped_fname = optarg; break;
case 'p': args->pfm = optarg; break;
case 'm': args->min_score = strtod(optarg,&tmp);
if ( *tmp ) error("Could not parse: -M, --min-score %s\n", optarg);
break;
case 'h':
case '?':
default: error("%s", usage_text()); break;
}
}
if ( optind==argc )
{
if ( !isatty(fileno((FILE *)stdin)) ) args->fname = "-"; // reading from stdin
else { error("%s", usage_text()); }
}
else if ( optind+1!=argc ) error("%s", usage_text());
else args->fname = argv[optind];
if ( !args->ped_fname && !args->pfm ) error("Missing the -p or -P option\n");
if ( args->ped_fname && args->pfm ) error("Expected only -p or -P option, not both\n");
init_data(args);
while ( bcf_sr_next_line(args->sr) )
process_record(args, bcf_sr_get_line(args->sr,0));
destroy_data(args);
return 0;
}
|