File: vcfbuf.c

package info (click to toggle)
bcftools 1.9-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 12,820 kB
  • sloc: ansic: 44,107; perl: 4,644; python: 471; sh: 333; makefile: 226
file content (442 lines) | stat: -rw-r--r-- 13,174 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/* The MIT License

   Copyright (c) 2016 Genome Research Ltd.

   Author: Petr Danecek <pd3@sanger.ac.uk>
   
   Permission is hereby granted, free of charge, to any person obtaining a copy
   of this software and associated documentation files (the "Software"), to deal
   in the Software without restriction, including without limitation the rights
   to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   copies of the Software, and to permit persons to whom the Software is
   furnished to do so, subject to the following conditions:
   
   The above copyright notice and this permission notice shall be included in
   all copies or substantial portions of the Software.
   
   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   THE SOFTWARE.

 */

#include <htslib/vcf.h>
#include <htslib/vcfutils.h>
#include "bcftools.h"
#include "vcfbuf.h"
#include "rbuf.h"

typedef struct
{
    double max;
    int rand_missing, skip_filter;
}
ld_t;

typedef struct
{
    bcf1_t *rec;
    double af;
    int af_set:1, idx:31;
}
vcfrec_t;

typedef struct
{
    int max_sites, mvrec, mac, mfarr;
    int *ac, *idx;
    float *farr;
    char *af_tag;
    vcfrec_t **vrec;
}
prune_t;

typedef struct
{
    int active, rid, end;
}
overlap_t;

struct _vcfbuf_t
{
    int win;
    bcf_hdr_t *hdr;
    vcfrec_t *vcf;
    rbuf_t rbuf;
    ld_t ld;
    prune_t prune;
    overlap_t overlap;
};

vcfbuf_t *vcfbuf_init(bcf_hdr_t *hdr, int win)
{
    vcfbuf_t *buf = (vcfbuf_t*) calloc(1,sizeof(vcfbuf_t));
    buf->hdr = hdr;
    buf->win = win;
    buf->overlap.rid = -1;
    rbuf_init(&buf->rbuf, 0);
    return buf;
}

void vcfbuf_destroy(vcfbuf_t *buf)
{
    int i;
    for (i=0; i<buf->rbuf.m; i++)
        if ( buf->vcf[i].rec ) bcf_destroy(buf->vcf[i].rec);
    free(buf->vcf);
    free(buf->prune.farr);
    free(buf->prune.vrec);
    free(buf->prune.ac);
    free(buf->prune.idx);
    free(buf);
}

void vcfbuf_set(vcfbuf_t *buf, vcfbuf_opt_t key, void *value)
{
    if ( key==VCFBUF_LD_MAX ) { buf->ld.max = *((double*)value); return; }
    if ( key==VCFBUF_RAND_MISSING ) { buf->ld.rand_missing = *((int*)value); return; }
    if ( key==VCFBUF_SKIP_FILTER ) { buf->ld.skip_filter = *((int*)value); return; }
    if ( key==VCFBUF_NSITES ) { buf->prune.max_sites = *((int*)value); return; }
    if ( key==VCFBUF_AF_TAG ) { buf->prune.af_tag = *((char**)value); return; }
    if ( key==VCFBUF_OVERLAP_WIN ) { buf->overlap.active = *((int*)value); return; }
}

int vcfbuf_nsites(vcfbuf_t *buf)
{
    return buf->rbuf.n;
}

bcf1_t *vcfbuf_push(vcfbuf_t *buf, bcf1_t *rec, int swap)
{
    if ( !swap ) error("todo: swap=%d\n", swap);

    rbuf_expand0(&buf->rbuf, vcfrec_t, buf->rbuf.n+1, buf->vcf);

    int i = rbuf_append(&buf->rbuf);
    if ( !buf->vcf[i].rec ) buf->vcf[i].rec = bcf_init1();
    
    bcf1_t *ret = buf->vcf[i].rec;
    buf->vcf[i].rec = rec;
    buf->vcf[i].af_set = 0;

    return ret;
}

static int cmpvrec(const void *_a, const void *_b)
{
    vcfrec_t *a = *((vcfrec_t**) _a);
    vcfrec_t *b = *((vcfrec_t**) _b);
    if ( a->af < b->af ) return -1;
    if ( a->af == b->af ) return 0;
    return 1;
}
static int cmpint_desc(const void *_a, const void *_b)
{
    int a = *((int*)_a);
    int b = *((int*)_b);
    if ( a < b ) return 1;
    if ( a == b ) return 0;
    return -1;
}

static void _prune_sites(vcfbuf_t *buf, int flush_all)
{
    int nbuf = flush_all ? buf->rbuf.n : buf->rbuf.n - 1;

    if ( nbuf > buf->prune.mvrec )
    {
        buf->prune.idx   = (int*) realloc(buf->prune.idx, nbuf*sizeof(int));
        buf->prune.vrec  = (vcfrec_t**) realloc(buf->prune.vrec, nbuf*sizeof(vcfrec_t*));
        buf->prune.mvrec = nbuf;
    }

    // set allele frequency and prepare buffer for sorting
    int i,k,irec = 0;
    for (i=-1; rbuf_next(&buf->rbuf,&i) && irec<nbuf; )
    {
        bcf1_t *line = buf->vcf[i].rec;
        if ( line->n_allele > buf->prune.mac ) 
        {
            buf->prune.ac = (int*) realloc(buf->prune.ac, line->n_allele*sizeof(*buf->prune.ac));
            buf->prune.mac = line->n_allele;
        }
        if ( !buf->vcf[i].af_set )
        {
            buf->vcf[i].af = 0;
            if ( buf->prune.af_tag )
            {
                if ( bcf_get_info_float(buf->hdr,line,buf->prune.af_tag,&buf->prune.farr, &buf->prune.mfarr) > 0 ) buf->vcf[i].af = buf->prune.farr[0];
            }
            else if ( bcf_calc_ac(buf->hdr, line, buf->prune.ac, BCF_UN_INFO|BCF_UN_FMT) )
            {
                int ntot = buf->prune.ac[0], nalt = 0; 
                for (k=1; k<line->n_allele; k++) nalt += buf->prune.ac[k];
                buf->vcf[i].af = ntot ? (float)nalt/ntot : 0;
            }
            buf->vcf[i].af_set = 1;
        }
        buf->vcf[i].idx = irec;
        buf->prune.vrec[irec++] = &buf->vcf[i];
    }

    // sort by allele frequency, low AF will be removed preferentially
    qsort(buf->prune.vrec, nbuf, sizeof(*buf->prune.vrec), cmpvrec);

    // sort the rbuf indexes to be pruned descendently so that j-th rbuf index
    // is removed before i-th index if i<j
    int nprune = nbuf - buf->prune.max_sites;
    for (i=0; i<nprune; i++)
        buf->prune.idx[i] = buf->prune.vrec[i]->idx;

    qsort(buf->prune.idx, nprune, sizeof(int), cmpint_desc);

    for (i=0; i<nprune; i++)
        rbuf_remove_kth(&buf->rbuf, vcfrec_t, buf->prune.idx[i], buf->vcf);
}

static int _overlap_can_flush(vcfbuf_t *buf, int flush_all)
{
    if ( flush_all ) { buf->overlap.rid = -1; return 1; }

    int i = rbuf_last(&buf->rbuf);
    vcfrec_t *last = &buf->vcf[i];
    if ( buf->overlap.rid != last->rec->rid ) buf->overlap.end = 0;

    int beg_pos = last->rec->pos;
    int end_pos = last->rec->pos + last->rec->rlen - 1;

    // Assuming left-aligned indels. In case it is a deletion, the real variant
    // starts one base after. If an insertion, the overlap with previous zero length.
    int imin = last->rec->rlen;
    for (i=0; i<last->rec->n_allele; i++)
    {
        char *ref = last->rec->d.allele[0];
        char *alt = last->rec->d.allele[i];
        if ( *alt == '<' ) continue;    // ignore symbolic alleles
        while ( *ref && *alt && nt_to_upper(*ref)==nt_to_upper(*alt) ) { ref++; alt++; }
        if ( imin > ref - last->rec->d.allele[0] ) imin = ref - last->rec->d.allele[0];
    }

    if ( beg_pos <= buf->overlap.end )
    {
        beg_pos += imin;
        if ( beg_pos > end_pos ) end_pos = beg_pos;
    }

    if ( buf->rbuf.n==1 )
    {
        buf->overlap.rid = last->rec->rid;
        buf->overlap.end = end_pos;
        return 0; 
    }
    if ( beg_pos <= buf->overlap.end )
    {
        if ( buf->overlap.end < end_pos ) buf->overlap.end = end_pos;
        return 0;
    }
    return 1;
}

bcf1_t *vcfbuf_flush(vcfbuf_t *buf, int flush_all)
{
    int i,j;

    if ( buf->rbuf.n==0 ) return NULL;
    if ( flush_all ) goto ret;

    i = rbuf_kth(&buf->rbuf, 0);    // first
    j = rbuf_last(&buf->rbuf);      // last

    if ( buf->vcf[i].rec->rid != buf->vcf[j].rec->rid ) goto ret;
    if ( buf->overlap.active )
    {
        int ret = _overlap_can_flush(buf, flush_all);
        //printf("can_flush: %d  %d - %d\n", ret, buf->vcf[i].rec->pos+1, buf->vcf[j].rec->pos+1);
        if ( ret ) goto ret;
    }
    //if ( buf->overlap.active && _overlap_can_flush(buf, flush_all) ) goto ret;

    if ( buf->win > 0 )
    {
        if ( buf->rbuf.n <= buf->win ) return NULL;
        goto ret;
    }
    else if ( buf->win < 0 )
    {
        if ( buf->vcf[i].rec->pos - buf->vcf[j].rec->pos > buf->win ) return NULL;
    }
    else return NULL;
    
ret:
    if ( buf->prune.max_sites && buf->prune.max_sites < buf->rbuf.n ) _prune_sites(buf, flush_all);

    i = rbuf_shift(&buf->rbuf);
    return buf->vcf[i].rec;
}

static double _estimate_af(int8_t *ptr, int size, int nvals, int nsamples)
{
    int i,j, nref = 0, nalt = 0;
    for (i=0; i<nsamples; i++)
    {
        for (j=0; j<nvals; j++)
        {
            if ( ptr[j]==bcf_gt_missing ) break;
            if ( ptr[j]==bcf_int8_vector_end ) break;
            if ( bcf_gt_allele(ptr[j]) ) nalt++;
            else nref++;
        }
        ptr += size;
    }
    if ( nref+nalt == 0 ) return 0;
    return (double)nalt/(nref+nalt);
}

/*
    For unphased genotypes D is approximated as suggested in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710162/
        D =~ (GT correlation) * sqrt(Pa*(1-Pa)*Pb*(1-Pb))
*/
static double _calc_ld(vcfbuf_t *buf, bcf1_t *arec, bcf1_t *brec)
{
    if ( arec->n_sample!=brec->n_sample ) error("Different number of samples: %d vs %d\n",arec->n_sample,brec->n_sample);
    assert( arec->n_sample );

    int i,j,igt = bcf_hdr_id2int(buf->hdr, BCF_DT_ID, "GT");
    bcf_unpack(arec, BCF_UN_FMT);
    bcf_unpack(brec, BCF_UN_FMT);
    bcf_fmt_t *afmt = NULL, *bfmt = NULL;
    for (i=0; i<arec->n_fmt; i++)
        if ( arec->d.fmt[i].id==igt ) { afmt = &arec->d.fmt[i]; break; }
    if ( !afmt ) return -1;  // no GT tag
    for (i=0; i<brec->n_fmt; i++)
        if ( brec->d.fmt[i].id==igt ) { bfmt = &brec->d.fmt[i]; break; }
    if ( !bfmt ) return -1;  // no GT tag

    if ( afmt->n==0 ) return -1;   // empty?!
    if ( bfmt->n==0 ) return -1;   // empty?!
    if ( afmt->type!=BCF_BT_INT8 ) error("TODO: the GT fmt_type is not int8!\n");
    if ( bfmt->type!=BCF_BT_INT8 ) error("TODO: the GT fmt_type is not int8!\n");

    // Determine allele frequencies, this is to sample randomly missing genotypes
    double aaf = 0, baf = 0;
    if ( buf->ld.rand_missing )
    {
        aaf = _estimate_af((int8_t*)afmt->p, afmt->size, afmt->n, arec->n_sample);
        baf = _estimate_af((int8_t*)bfmt->p, bfmt->size, bfmt->n, brec->n_sample);
    }

    // Calculate correlation 
    double ab = 0, aa = 0, bb = 0, a = 0, b = 0;
    int nab = 0, na = 0, nb = 0, ndiff = 0;
    for (i=0; i<arec->n_sample; i++)
    {
        int8_t *aptr = (int8_t*) (afmt->p + i*afmt->size);
        int8_t *bptr = (int8_t*) (bfmt->p + i*bfmt->size);
        int adsg = 0, bdsg = 0, an = 0, bn = 0;
        for (j=0; j<afmt->n; j++)
        {
            if ( aptr[j]==bcf_int8_vector_end ) break;
            if ( aptr[j]==bcf_gt_missing )
            {
                if ( !buf->ld.rand_missing ) break;
                if ( rand()/RAND_MAX >= aaf ) adsg += 1;
            }
            else if ( bcf_gt_allele(aptr[j]) ) adsg += 1;
            an++;
        }
        for (j=0; j<bfmt->n; j++)
        {
            if ( bptr[j]==bcf_int8_vector_end ) break;
            if ( bptr[j]==bcf_gt_missing )
            {
                if ( !buf->ld.rand_missing ) break;
                if ( rand()/RAND_MAX >= baf ) bdsg += 1;
            }
            else if ( bcf_gt_allele(bptr[j]) ) bdsg += 1;
            bn++;
        }
        if ( an )
        {
            aa += adsg*adsg;
            a  += adsg;
            na++;
        }
        if ( bn )
        {
            bb += bdsg*bdsg;
            b  += bdsg;
            nb++;
        }
        if ( an && bn )
        {
            if ( adsg!=bdsg ) ndiff++;
            ab += adsg*bdsg;
            nab++;
        }
    }
    if ( !nab ) return -1;

    double cor;
    if ( !ndiff ) cor = 1;
    else
    {
        // Don't know how to deal with zero variance. Since this the purpose is filtering,
        // it is not enough to say the value is undefined. Therefore an artificial noise is
        // added to make the denominator non-zero.
        if ( aa == a*a/na || bb == b*b/nb )
        {
            aa += 3*3;
            bb += 3*3;
            ab += 3*3;
            a  += 3;
            b  += 3;
            na++;
            nb++;
            nab++;
        }
        cor = (ab/nab - a/na*b/nb) / sqrt(aa/na - a/na*a/na) / sqrt(bb/nb - b/nb*b/nb);
    }
    return cor*cor;
}

bcf1_t *vcfbuf_max_ld(vcfbuf_t *buf, bcf1_t *rec, double *ld)
{
    *ld = -1;
    if ( !buf->rbuf.n ) return NULL;

    int i = buf->rbuf.f;

    // Relying on vcfbuf being properly flushed - all sites in the buffer
    // must come from the same chromosome
    if ( buf->vcf[i].rec->rid != rec->rid ) return NULL;

    int imax = 0;
    double max = 0;
    for (i=-1; rbuf_next(&buf->rbuf,&i); )
    {   
        if ( buf->ld.skip_filter )
        {
            if ( buf->vcf[i].rec->d.n_flt > 1 ) continue;   // multiple filters are set
            if ( buf->vcf[i].rec->d.n_flt==1 && buf->vcf[i].rec->d.flt[0]!=0 ) continue;    // not PASS
        }
        double val = _calc_ld(buf, buf->vcf[i].rec, rec);
        if ( buf->ld.max && buf->ld.max < val ) 
        {
            *ld = val;
            return buf->vcf[i].rec;
        }
        if ( val > max )
        {
            max  = val;
            imax = i;
        }
    }
    *ld = max;
    return buf->vcf[imax].rec;
}