1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
|
# -*- coding: utf-8 -*-
#
# Copyright European Organization for Nuclear Research (CERN)
# All rights reserved
#
# Author: Vasilis.Vlachoudis@cern.ch
# Contributor: @harvie Tomas Mudrunka (2018)
# Date: 10-Mar-2015
from __future__ import print_function
from __future__ import absolute_import
__author__ = "Vasilis Vlachoudis"
__email__ = "Vasilis.Vlachoudis@cern.ch"
from operator import itemgetter
from copy import deepcopy
from math import atan, atan2, cos, acos, degrees, pi, sin, sqrt, floor, ceil
from bmath import Vector, quadratic
from Utils import to_zip
EPS = 1E-7 # strict tolerances for operations
EPS2 = EPS**2
EPSV = EPS*10 # relaxed tolerances for vectors
EPSV2 = EPSV**2
PI2 = 2.0*pi
#------------------------------------------------------------------------------
# Compare two Vectors if they are the same
#------------------------------------------------------------------------------
def eq(A,B,acc=EPS):
if A is None or B is None :
return False
d2 = (A[0]-B[0])**2 + (A[1]-B[1])**2
err = acc*acc * ((abs(A[0])+abs(B[0]))**2 + \
(abs(A[1])+abs(B[1]))**2 + 1.0)
return d2<err
#==============================================================================
# Segment
#==============================================================================
class Segment:
LINE = 1
CW = 2
CCW = 3
_TYPES = ["LINE", "CW ","CCW "]
#----------------------------------------------------------------------
def __init__(self, t, s, e, c=None): #, r=None): #, sPhi=None, ePhi=None):
self.type = t
self.A = s
self.B = e
self.AB = self.B-self.A # vector from start to end
self._cross = False # end point is a path crossing point
self._inside = [] # auxiliary variable for tab and island operations
if self.type==Segment.LINE:
self.calcBBox()
elif c is not None:
self.setCenter(c)
#----------------------------------------------------------------------
def setStart(self, s):
self.A = s
self.AB = self.B-self.A
if self.type==Segment.LINE:
self.calcBBox()
else:
self.correct()
#----------------------------------------------------------------------
def setEnd(self, e):
self.B = e
self.AB = self.B-self.A
if self.type==Segment.LINE:
self.calcBBox()
else:
self.correct()
#----------------------------------------------------------------------
def setCenter(self, c):
self.C = c
self.correct()
#----------------------------------------------------------------------
# Correct arc so radius, center, start and end point to match
#----------------------------------------------------------------------
def correct(self):
if self.type == Segment.LINE: return #There's no use for this on lines
if self.AB.length2()>EPS:
# Correct center by finding the intersection of the
# orthogonal line from the middle of the start-end segment
# and the line in the direction start-existing.C
# First line is R = M + P*r
# Mid point
M = 0.5*(self.A + self.B)
# perpendicular vector
P = self.AB.orthogonal()
# Second line is R = S + CS*t
# S=start, C=center
CS = self.C - self.A
# R = S + CS*t = M + P*r
# => CS*t - P*r = M - S = MS
MS = M - self.A
# linear system
# CSx*t - Px*r = MSx
# CSy*t - Py*r = MSy
# | CSx -Px |
# Dt = | |
# | CSy -Py |
D = -CS[0]*P[1] + CS[1]*P[0]
if abs(D)<EPS2:
self.change2Line()
return
# | MSx -Px |
# Dt = | |
# | MSy -Py |
Dt = -MS[0]*P[1] + MS[1]*P[0]
t = Dt/D
# C = R(t) = S + CS*t
#C = self.C
self.C = self.A + CS*t
if t < 0.0:
# change type
if self.type == Segment.CW:
self.type = Segment.CCW
else:
self.type = Segment.CW
#if (self.C-C).length()>EPS:
# print self
# print (self.C-C).length()
# make a check for both radius
#r1 = (self.A-self.C).length()
#r2 = (self.B-self.C).length()
#if abs(r1-r2)>EPS:
# print "ERROR r1=",r1,"r2=",r2
# print self
# -------------------------------------------------------------
# Check angles in ARC to ensure proper values
# -------------------------------------------------------------
self.radius = (self.A-self.C).length() # based on starting point
self.startPhi = atan2(self.A[1]-self.C[1], self.A[0]-self.C[0])
self.endPhi = atan2(self.B[1]-self.C[1], self.B[0]-self.C[0])
if abs(self.startPhi)<EPS: self.startPhi = 0.0
if abs(self.endPhi) <EPS: self.endPhi = 0.0
if self.type == Segment.CW:
# CW/Inverted: it must be end < start
if self.startPhi <= self.endPhi: self.startPhi += PI2
elif self.type == Segment.CCW:
# CCW/Normal: it must be start < end
if self.endPhi <= self.startPhi: self.endPhi += PI2
self.calcBBox()
#----------------------------------------------------------------------
def change2Line(self):
self.type = Segment.LINE
self.calcBBox()
#----------------------------------------------------------------------
# Invert segment
#----------------------------------------------------------------------
def invert(self):
self.A, self.B = self.B, self.A
self.AB = -self.AB
if self.type != Segment.LINE:
if self.type == Segment.CW:
self.type = Segment.CCW
elif self.type == Segment.CCW:
self.type = Segment.CW
self.startPhi, self.endPhi = self.endPhi, self.startPhi
self.correct()
#----------------------------------------------------------------------
def calcBBox(self):
if self.type == Segment.LINE:
self.minx = min(self.A[0], self.B[0]) - EPSV
self.maxx = max(self.A[0], self.B[0]) + EPSV
self.miny = min(self.A[1], self.B[1]) - EPSV
self.maxy = max(self.A[1], self.B[1]) + EPSV
else:
# FIXME very bad
self.minx = self.C[0] - self.radius - EPSV
self.maxx = self.C[0] + self.radius + EPSV
self.miny = self.C[1] - self.radius - EPSV
self.maxy = self.C[1] + self.radius + EPSV
#----------------------------------------------------------------------
def __repr__(self):
if self._cross:
c = "x"
else:
c = ""
if self.type == Segment.LINE:
return "%s %s %s%s L:%g"%(Segment._TYPES[self.type-1],
repr(self.A), repr(self.B), c, self.length())
else:
return "%s %s %s%s C:%s R:%g Phi:[%g..%g] L:%g" % \
(Segment._TYPES[self.type-1], \
repr(self.A), repr(self.B), c, \
self.C, self.radius, \
degrees(self.startPhi), \
degrees(self.endPhi),
self.length())
#----------------------------------------------------------------------
# Return a point ON the segment (or extrapolated outside of it) at distance traveled from A (or B)
#----------------------------------------------------------------------
def extrapolatePoint(self, dist, B=False):
if self.type == Segment.LINE:
if not B:
return self.A+(self.tangentStart()*dist)
else:
return self.B+(self.tangentStart()*dist)
else:
if self.type == Segment.CW:
dist = -dist
#Handle circle/ARC with zero radius (where did we get such segment???)
if self.radius == 0:
return self.B
raddist = dist/self.radius
if not B:
phi = self.startPhi+raddist
else:
phi = self.endPhi+raddist
return Vector( self.C[0] + self.radius*cos(phi),
self.C[1] + self.radius*sin(phi))
#----------------------------------------------------------------------
# Return a point ON the segment at distance traveled from A to B (or B to A when negative)
#----------------------------------------------------------------------
def distPoint(self, dist):
if dist >= 0:
return self.extrapolatePoint(dist)
else:
return self.extrapolatePoint(abs(dist), True)
#----------------------------------------------------------------------
# Return True if 2 Vectors have the same type, the same A and B and the same C whenever it has a C attribute
#----------------------------------------------------------------------
def equals(self,other):
result = True
if not self.type == other.type :
return False
if not eq(self.A,other.A):
return False
if not eq(self.B,other.B):
return False
if hasattr(self, "C"):
if hasattr(other, "C"):
if eq(self.C,other.C):
return True
else : return False
else : return False
else :
if hasattr(other,"C"):
return False
return True
#----------------------------------------------------------------------
# Return a point ON the segment in the middle (= factor 0.5) or different
#----------------------------------------------------------------------
def midPoint(self):
return self.extrapolatePoint(self.length()/2)
#----------------------------------------------------------------------
# Return segment, which naturaly continues this segment
#----------------------------------------------------------------------
def suffixSegment(self, dist):
suffix = Segment(self.type, self.B, self.extrapolatePoint(dist, True))
if self.type != Segment.LINE:
suffix.setCenter(self.C)
return suffix
#----------------------------------------------------------------------
# Return segment, which naturaly continues this segment
#----------------------------------------------------------------------
def shortenedSegment(self, dist):
start = self.extrapolatePoint(dist)
end = self.B
if dist >= self.length():
end = start
shortened = Segment(self.type, start, end)
if self.type != Segment.LINE:
shortened.setCenter(self.C)
return shortened
#----------------------------------------------------------------------
# Linearize this segment and return resulted segments
#----------------------------------------------------------------------
def linearize(self, maxseg=1, splitlines=False):
#self.correct()
#linearized = Path("linearized segment", None)
linearized = []
if splitlines or self.type == Segment.CW or self.type == Segment.CCW:
count = int(ceil(self.length() / maxseg))
if count == 0: count = 1 #fix for zero length
step = self.length() / count
#print "---"
for i in range(0,count):
#print i, self.length(), i*step, (i+1)*step
linearized.append(Segment(Segment.LINE, self.distPoint(i*step), self.distPoint((i+1)*step)))
else:
linearized.append(self)
return linearized
#----------------------------------------------------------------------
# Return tangential offset of this segment
#----------------------------------------------------------------------
def tangentialOffset(self, distance):
#self.A = self.A + ( self.tangentStart() * distance )
#self.B = self.B + ( self.tangentEnd() * distance )
#self.correct()
seg = Segment(
self.type,
self.A + ( self.tangentStart() * distance ),
self.B + ( self.tangentEnd() * distance )
)
if self.type != Segment.LINE:
seg.setCenter(self.C)
return seg
#----------------------------------------------------------------------
# return segment length
#----------------------------------------------------------------------
def length(self):
if self.type == Segment.LINE:
return self.AB.length()
elif self.type == Segment.CW:
phi = self.startPhi - self.endPhi
elif self.type == Segment.CCW:
phi = self.endPhi - self.startPhi
if phi < 0.0: phi += PI2
return self.radius * phi
#----------------------------------------------------------------------
# Tangent vector at start
#----------------------------------------------------------------------
def tangentStart(self):
if self.type == Segment.LINE:
t = self.AB.clone()
t.norm()
return t
else:
O = self.A - self.C
O.norm()
if self.type == Segment.CCW:
# return cross product -O x z(0,0,1)
return Vector(-O[1], O[0])
else:
# return cross product -O x z(0,0,1)
return Vector(O[1], -O[0])
#----------------------------------------------------------------------
# Tangent vector at end
#----------------------------------------------------------------------
def tangentEnd(self):
if self.type == Segment.LINE:
t = self.AB.clone()
t.norm()
return t
else:
O = self.B - self.C
O.norm()
if self.type == Segment.CCW:
# return cross product -O x z(0,0,1)
return Vector(-O[1], O[0])
else:
# return cross product -O x z(0,0,1)
return Vector(O[1], -O[0])
#----------------------------------------------------------------------
# Orthogonal vector at start
#----------------------------------------------------------------------
def orthogonalStart(self):
if self.type == Segment.LINE:
O = self.AB.orthogonal()
O.norm()
return O
else:
O = self.A - self.C
O.norm()
if self.type == Segment.CCW:
return -O
else:
return O
#----------------------------------------------------------------------
# Orthogonal vector at end
#----------------------------------------------------------------------
def orthogonalEnd(self):
if self.type == Segment.LINE:
O = self.AB.orthogonal()
O.norm()
return O
else:
O = self.B - self.C
O.norm()
if self.type == Segment.CCW:
return -O
else:
return O
#----------------------------------------------------------------------
# Check if point P is on segment
# WARNING: this is not a robust test is used for the intersect
#----------------------------------------------------------------------
def _insideArc(self, P):
phi = atan2(P[1]-self.C[1], P[0]-self.C[0])
if self.type==Segment.CW:
if phi < self.endPhi-EPS/self.radius: phi += PI2
if phi <= self.startPhi + EPS/self.radius:
return True
elif self.type==Segment.CCW:
if phi < self.startPhi-EPS/self.radius: phi += PI2
if phi <= self.endPhi + EPS/self.radius:
return True
if eq(self.A,P,EPS) or eq(self.B,P,EPS):
return True
return False
#----------------------------------------------------------------------
# Return if P is inside the segment
#----------------------------------------------------------------------
def inside(self, P):
if self.type == Segment.LINE:
if P[0] <= self.minx or P[0] >= self.maxx: return False
if P[1] <= self.miny or P[1] >= self.maxy: return False
return True
else:
return self._insideArc(P)
#----------------------------------------------------------------------
# return a increasing number LINE:length2 or CW/CCW:angle of point P
# on the segment wrt to the start point. Useful for sorting points
# on segments @see Path.intersectSelf()
#----------------------------------------------------------------------
def order(self, P):
if self.type == Segment.LINE:
return (P-self.A).length2()
phi = atan2(P[1]-self.C[1], P[0]-self.C[0])
if self.type==Segment.CW:
if phi < self.endPhi-EPS/self.radius: phi += PI2
return self.startPhi - phi
elif self.type==Segment.CCW:
if phi < self.startPhi-EPS/self.radius: phi += PI2
return phi - self.startPhi
#----------------------------------------------------------------------
# Intersect a line with line
#----------------------------------------------------------------------
def _intersectLineLine(self, other):
# check for intersection
DD = -self.AB[0]*other.AB[1] + self.AB[1]*other.AB[0]
if abs(DD)<EPS2: return None,None
Dt = -(other.A[0]-self.A[0])*other.AB[1] + \
(other.A[1]-self.A[1])*other.AB[0]
t = Dt/DD
P = self.AB*t + self.A
if self.minx<=P[0]<=self.maxx and other.minx<=P[0]<=other.maxx and \
self.miny<=P[1]<=self.maxy and other.miny<=P[1]<=other.maxy:
return P,None
return None,None
#----------------------------------------------------------------------
# Intersect a line segment with an arc
#----------------------------------------------------------------------
def _intersectLineArc(self, arc):
#AB = self.B
#a = AB.length2()
a = self.AB[0]**2 + self.AB[1]**2
if a<EPS2: return None,None
#CA = self.A-arc.C
#b = 2.0*AB*CA
#c = CA.length2() - arc.radius**2
CAx = self.A[0] - arc.C[0]
CAy = self.A[1] - arc.C[1]
b = 2.0*(self.AB[0]*CAx + self.AB[1]*CAy)
#c = CAx**2 + CAy**2 - arc.radius**2
if abs(CAx) < abs(CAy):
c = CAy**2 + (CAx+arc.radius)*(CAx-arc.radius)
else:
c = CAx**2 + (CAy+arc.radius)*(CAy-arc.radius)
t1,t2 = quadratic(b/a,c/a)
if t1 is None: return None,None
if t1<-EPS or t1>1.0+EPS:
P1 = None
elif abs(t1)<=EPS: #if t1 is near zero, then we are on point A
P1 = Vector(self.A)
elif t1>=1.0-EPS:# abs(t1-1.)<=EPS ?
P1 = Vector(self.B)
else:
#P1 = AB*t1 + self.A
P1 = Vector(self.AB[0]*t1+self.A[0], self.AB[1]*t1+self.A[1])
if P1 and not arc._insideArc(P1): P1 = None
if t2<-EPS or t2>1.0+EPS:
P2 = None
elif abs(t2)<=EPS:#if t2 is near zero, then we are on point A
P2 = Vector(self.A)
elif t2>=1.0-EPS:# abs(t2-1.)<=EPS ?
P2 = Vector(self.B)
else:
#P2 = AB*t2 + self.A
P2 = Vector(self.AB[0]*t2+self.A[0], self.AB[1]*t2+self.A[1])
if P2 and not arc._insideArc(P2): P2 = None
# force P1 to have always the solution if any
if P1 is None: return P2,None
return P1,P2
#----------------------------------------------------------------------
# Intersect a circle with circle
#----------------------------------------------------------------------
def _intersectCircleCircle(self, other):
# Circle circle intersection
CC = other.C - self.C
d = CC.norm()
if d<=EPS2 or d>=self.radius+other.radius: return None,None
#x = (d**2 + self.radius**2 - other.radius**2) / (2.*d)
if abs(d)<abs(self.radius):
x = (self.radius**2 + \
(d+other.radius)*(d-other.radius)) / (2.*d)
else:
x = (d**2 + \
(self.radius+other.radius)*(self.radius-other.radius)) / (2.*d)
diff = (self.radius-x)*(self.radius+x)
if diff<-EPS: return None,None
elif diff<EPS: diff = 0.0
y = sqrt(diff)
O = CC.orthogonal()
P1 = self.C + x*CC + y*O
if not self._insideArc(P1) or not other._insideArc(P1):
P1 = None
P2 = self.C + x*CC - y*O
if not self._insideArc(P2) or not other._insideArc(P2):
P2 = None
# force P1 to have always the solution if any
if P1 is None: return P2,None
return P1,P2
#----------------------------------------------------------------------
# Intersect with another segment
# returns two points
#----------------------------------------------------------------------
def intersect(self, other):
# intersect their bounding boxes
if max(self.minx,other.minx) > min(self.maxx,other.maxx): return None,None
if max(self.miny,other.miny) > min(self.maxy,other.maxy): return None,None
if self.type==Segment.LINE and other.type==Segment.LINE:
return self._intersectLineLine(other)
elif self.type==Segment.LINE and other.type!=Segment.LINE:
return self._intersectLineArc(other)
elif self.type!=Segment.LINE and other.type==Segment.LINE:
return other._intersectLineArc(self)
elif self.type!=Segment.LINE and other.type!=Segment.LINE:
return self._intersectCircleCircle(other)
#----------------------------------------------------------------------
# Return minimum distance of P from segment
#----------------------------------------------------------------------
def distance(self, P):
# if eq(P,Vector(42.0926, 16.8319)) and \
# eq(self.A, Vector(48.0042, 15.5539)) and \
# eq(self.B, Vector(36.2223, 15.5307)):
# import pdb; pdb.set_trace()
if self.type == Segment.LINE:
AB2 = self.AB[0]**2 + self.AB[1]**2
APx = P[0]-self.A[0]
APy = P[1]-self.A[1]
if abs(AB2)<EPS: return sqrt(APx**2+APy**2)
dot = APx*self.AB[0] + APy*self.AB[1]
proj = dot / AB2
if proj < 0.0:
return sqrt(APx**2+APy**2)
elif proj > 1.0:
return sqrt((P[0]-self.B[0])**2 + (P[1]-self.B[1])**2)
else:
d = (APx**2+APy**2) - dot*proj
if abs(d)<EPS: return 0.0
return sqrt(d)
elif self.type == Segment.CW:
PCx = P[0] - self.C[0]
PCy = P[1] - self.C[1]
phi = atan2(PCy, PCx)
if phi < self.endPhi-EPS/self.radius: phi += PI2
if phi > self.startPhi+EPS/self.radius:
return sqrt((P[0]-self.A[0])**2 + (P[1]-self.A[1])**2)
else:
return abs(sqrt(PCx**2+PCy**2) - self.radius)
elif self.type == Segment.CCW:
PCx = P[0] - self.C[0]
PCy = P[1] - self.C[1]
phi = atan2(PCy, PCx)
if phi < self.startPhi-EPS/self.radius: phi += PI2
if phi > self.endPhi+EPS/self.radius:
return sqrt((P[0]-self.B[0])**2 + (P[1]-self.B[1])**2)
else:
return abs(sqrt(PCx**2+PCy**2) - self.radius)
#----------------------------------------------------------------------
# Split segment at point P and return second part
#----------------------------------------------------------------------
def split(self, P):
if eq(P,self.A,EPS):
# XXX should flag previous segment as cross
return -1
elif eq(P,self.B,EPS):
self._cross = True
return 0
new = Segment(self.type, P, self.B)
new._cross = self._cross
self._cross = False
self.B = P
self.AB = self.B - self.A
if self.type>Segment.LINE:
new.setCenter(self.C) #, self.radius, None, self.endPhi)
self.setCenter(self.C) #, self.radius, self.startPhi, new.startPhi)
else:
self.calcBBox()
return new
#==============================================================================
# Path: a list of joint segments
# Closed path?
# Path length
# reverse
# ignore zero length segments
#==============================================================================
class Path(list):
def __init__(self, name, color=None):
self.name = name
self.color = color
self._length = None
#----------------------------------------------------------------------
def __repr__(self):
return "%s:\n\t%s"%(self.name, "\n\t".join([
"%3d: %s"%(i,x) for i,x in enumerate(self)]))
#----------------------------------------------------------------------
def calcBBox(self):
self.minx = self.miny = 1E10
self.maxx = self.maxy = -1E10
for segment in self:
self.minx = min(self.minx, segment.minx)
self.miny = min(self.miny, segment.miny)
self.maxx = max(self.maxx, segment.maxx)
self.maxy = max(self.maxy, segment.maxy)
#----------------------------------------------------------------------
# @return true if path is closed
#----------------------------------------------------------------------
def isClosed(self):
return self and eq(self[0].A, self[-1].B)
#----------------------------------------------------------------------
# Close path by connecting the with a line segment
#----------------------------------------------------------------------
def close(self):
self._length = None
self.append(Segment(Segment.LINE, self[-1].B, self[0].A))
#----------------------------------------------------------------------
# Join path at the end
#----------------------------------------------------------------------
def join(self, path):
self._length = None
self.append(Segment(Segment.LINE, self[-1].B, path[0].A))
self.extend(path)
#----------------------------------------------------------------------
# @return total length of path
#----------------------------------------------------------------------
def length(self):
if self._length is not None: return self._length
self._length = 0.0
for segment in self:
self._length += segment.length()
return self._length
#----------------------------------------------------------------------
# Find minimum distance of point P wrt to the path
#----------------------------------------------------------------------
def distance(self, P):
return min([x.distance(P) for x in self])
#----------------------------------------------------------------------
# Change path direction:
# +1 for Segment.CW
# -1 for Segment.CCW
#----------------------------------------------------------------------
def directionSet(self, opdir):
curdir = self._direction(self.isClosed())
if curdir == 0: return False
if curdir != 0 and curdir != opdir: self.invert()
return True
#----------------------------------------------------------------------
# Return:
# -1 for Segment.CCW closed path
# 0 for open path
# +1 for Segment.CW closed path
#----------------------------------------------------------------------
def direction(self):
if not self.isClosed(): return 0
return self._direction(True)
#----------------------------------------------------------------------
# Return -1/+1 even for open paths (experimental, but seems to work better, than previous version)
# https://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order
#----------------------------------------------------------------------
def _direction(self, closed=True):
def dircalc(A,B):
dir = (B[0] - A[0])*(B[1] + A[1])
#print("point", A[0], A[1], B[0], B[1],"\t",dir)
#print("g1 x"+str(A[0])+" y"+str(A[1]))
#print("g1 x"+str(B[0])+" y"+str(B[1]))
return dir
sum = 0
cwarc = 0
for segment in self:
if segment.type == Segment.CW: cwarc += segment.length()
if segment.type == Segment.CCW: cwarc -= segment.length()
A = segment.A
B = segment.B
if A is not None and B is not None:
sum += dircalc(A,B)
#Decide direction
if sum < 0: sum = -1 #CCW
if sum > 0: sum = 1 #CW
#Arcs (and therefore circles) are now treated as lines (linear approximation)
#If we can't decide based on points, we will compare amount of distance traveled in CW and CCW arcs
#This is kinda heuristic. If we ever need better results, there's way to do it:
#Just split all arcs into 10 smaller arcs before processing.
#That will vastly increase the resolution of linear approximation.
#If you know to split arcs, plese do it. For now we have this heuristic:
if sum == 0:
if cwarc < 0: sum = -1 #CCW
if cwarc > 0: sum = 1 #CW
#if sum == 0: sum = 1 #CW if still undecided?
#print("Sum ", sum)
return sum
#----------------------------------------------------------------------
# @return the bounding box of the path (very crude)
#----------------------------------------------------------------------
def bbox(self):
minx = self[0].minx
miny = self[0].miny
maxx = self[0].maxx
maxy = self[0].maxy
for segment in self[1:]:
minx = min(minx, segment.minx)
miny = min(miny, segment.miny)
maxx = max(maxx, segment.maxx)
maxy = max(maxy, segment.maxy)
return minx,miny,maxx,maxy
#----------------------------------------------------------------------
# @return the center of the path (based on bbox)
#----------------------------------------------------------------------
def center(self):
minx,miny,maxx,maxy = self.bbox()
x=(minx+maxx)/2
y=(miny+maxy)/2
return x,y
#----------------------------------------------------------------------
# Return a point ON the path at distance traveled from A to B (or B to A when negative)
#----------------------------------------------------------------------
def distPoint(self, dist):
if dist < 0:
dist = self.length() + dist
for segment in self:
if dist-segment.length() <= 0:
return segment.distPoint(dist)
dist -= segment.length()
#----------------------------------------------------------------------
# Return linearized path (arcs are subdivided to lines)
#----------------------------------------------------------------------
def linearize(self, maxseg=1, splitlines=False):
linearized = Path(self.name, self.color)
for seg in self:
linearized.extend(seg.linearize(maxseg, splitlines))
return linearized
#----------------------------------------------------------------------
# Return arcfited path
#----------------------------------------------------------------------
def arcFit(self, prec=0.5, numseg=10):
def vecdir(TA,TB):
if (( TA[0] * TB[1] ) - ( TA[1] * TB[0] )) < 0:
return 1
return 0
def arcsteer(A,B):
TA = A.tangentEnd()
TB = B.tangentStart()
return vecdir(TA,TB)
def arcdir(seg, C):
CV = C - seg.midPoint()
CV.normalize()
return vecdir(seg.tangentStart(), CV)
def pdist(A,B):
return sqrt((B[0]-A[0])**2 + (B[1]-A[1])**2)
def circle3center(A,B,C):
try:
xDelta_a = B[0] - A[0]
yDelta_a = B[1] - A[1]
xDelta_b = C[0] - B[0]
yDelta_b = C[1] - B[1]
center = Vector(0, 0)
aSlope = yDelta_a/xDelta_a
bSlope = yDelta_b/xDelta_b
center[0] = (aSlope*bSlope*(A[1] - C[1]) + bSlope*(A[0] + B[0]) - aSlope*(B[0]+C[0]) )/(2* (bSlope-aSlope) )
center[1] = -1*(center[0] - (A[0]+B[0])/2)/aSlope + (A[1]+B[1])/2
return center
except:
return None
def arcd2seg(arcd):
if arcd:
return Segment.CW
return Segment.CCW
def testFit(path, prec, C, r, dir=None):
if C is None or r is None: return False
#Small radiuses need more precision
prec = min(prec, r/4)
#Check if there are no parts of arc going far away from the original lines
#FIXME: currently only comparing lenghts and middle points
if len(path) > 1:
path._length = None
arc = Segment(arcd2seg(arcd), path[0].A, path[-1].B, C)
if abs(path.length() - arc.length()) > prec: return False
if pdist(path.distPoint(path.length()/2), arc.midPoint()) > prec: return False
#Check if there are no original lines going far away from arc
for seg in path:
if seg.type != Segment.LINE: return False
if abs(pdist(seg.A, C) - r) > prec: return False
if abs(pdist(seg.B, C) - r) > prec: return False
if abs(pdist(seg.midPoint(), C) - r) > prec: return False
#Test direction
if arcdir(seg, C) != dir:
#print "wrong direction"
return False
return True
#Get circle center(s) given radius and two points
def radius2points(A,B,r, arcd=None):
q = sqrt((B[0]-A[0])**2 + (B[1]-A[1])**2)
x3 = (A[0]+B[0])/2
y3 = (A[1]+B[1])/2
C = Vector(
x3 + sqrt(abs(r**2-(q/2)**2))*(A[1]-B[1])/q,
y3 + sqrt(abs(r**2-(q/2)**2))*(B[0]-A[0])/q
)
D = Vector(
x3 - sqrt(abs(r**2-(q/2)**2))*(A[1]-B[1])/q,
y3 - sqrt(abs(r**2-(q/2)**2))*(B[0]-A[0])/q
)
#There are two solutions (C and D), choose which one we need
if arcd is not None:
if arcd == 0:
return C
else:
return D
else:
return C, D
def path2arc(tmpath):
#Test if all segments are lines
for seg in tmpath:
if seg.type != Segment.LINE: return None, None, None
#Find center
cnt = 0
C = Vector(0,0)
for i in range(1, len(tmpath)):
Ct = circle3center(tmpath[i-1].A, tmpath[i-1].B, tmpath[i].B)
#Ct = circle3center(tmpath[0].A, tmpath[i].A, tmpath[-1].B)
if Ct is not None:
cnt += 1
C += Ct
if cnt < 1:
return None, None, None
C /= cnt
#Find direction
arcd = arcdir(tmpath[0], C)
#Find radius
r = 0
for seg in tmpath:
r += pdist(seg.A, C)
r += pdist(seg.B, C)
r /= len(tmpath)*2
#Fix center to match start and end of segment:
#(Not sure if this needed)
#print("Center: ", C, radius2points(tmpath[0].A, tmpath[-1].B, r, arcd))
C = radius2points(tmpath[0].A, tmpath[-1].B, r, arcd)
return C, r, arcd
def path2gc(path):
print("(Block-name: debug)")
print("g0 x%f y%f"%(path[0].A[0], path[0].A[1]))
for seg in path:
print("g1 x%f y%f"%(seg.B[0], seg.B[1]))
numseg = max(2,numseg)
npath = Path(self.name, self.color)
i = 0
while i < len(self):
found = False
#FIXME: allow to merge lines with existing arcs when arc fitting
if i+numseg <= len(self):
tmpath = Path('tmp')
tmpath.extend(self[i:i+numseg])
C, r, arcd = path2arc(tmpath)
#FIXME: define arc in way that would enable us to fit arcs without fitting lines first
if testFit(tmpath, prec, C, r, arcd):
j = i+numseg
while j < len(self):
if not testFit([self[j]], prec, C, r, arcd): break
tmpath.append(self[j])
if not testFit(tmpath, prec, C, r, arcd):
del tmpath[-1]
break
Co, ro, ign = path2arc(tmpath)
if testFit(tmpath, prec, Co, ro, arcd):
#print "upd", len(tmpath), C, r, Co, ro
C, r = Co, ro
j += 1
if len(tmpath) >= numseg:
found = True
#npath.extend(tmpath)
#npath.append(Segment(Segment.LINE, tmpath[0].A, tmpath[-1].B))
npath.append(Segment(arcd2seg(arcd), tmpath[0].A, tmpath[-1].B, C))
#path2gc(tmpath)
i = j
if not found:
npath.append(self[i])
i+=1
return npath
#----------------------------------------------------------------------
# Return path with merged adjacent lines. It's good to use before arc fiting
#----------------------------------------------------------------------
def mergeLines(self, prec=0.5):
npath = Path(self.name, self.color)
i = 0
while i < len(self):
found = False
if self[i].type == Segment.LINE:
tmpath = Path('tmp')
tmpath.extend([self[i]])
j = i+1
while(j < len(self)):
#Test if next segment is line
if not self[j].type == Segment.LINE: break
#Test if there is continuity between lines
if not eq(tmpath[-1].B, self[j].A): break
#Test if lines are EXACTLY parallel (not a good idea, we want little bit of give)
#if not eq(tmpath[0].tangentEnd(), self[j].tangentEnd()): break
#Test if no point diverts too far from proposed fited line (within specified precision)
fit = Segment(Segment.LINE, tmpath[0].A, self[j].B)
toofar = False
for seg in tmpath:
if fit.distance(seg.B) > prec: toofar = True
if toofar: break
tmpath.append(self[j])
j += 1
if len(tmpath) > 1:
found = True
npath.append(Segment(Segment.LINE, tmpath[0].A, tmpath[-1].B))
i = j
if not found:
npath.append(self[i])
i+=1
return npath
#----------------------------------------------------------------------
# Return true if point P(x,y) is inside the path
# The solution is determined by the number N of crossings of a horizontal
# line starting from the point P(x,y)
# If N is odd the point is inside
# if N is even the point is outside
# WARNING: the path must be closed otherwise it is meaningless
#----------------------------------------------------------------------
def isInside(self, P):
#print "P=",P
#minx,miny,maxx,maxy = self.bbox()
maxx = self.bbox()[2]
#print "limits:",minx,miny,maxx,maxy
#FIXME: this is strange. adding +1000 to line endpoint changes the outcome of method
# i've found that doing this works around some unknown problem in most cases, but it's not really ideal solution
line = Segment(Segment.LINE, P, Vector(maxx*1.1, P[1]+1000))
count = 0
PP1 = None # previous points to avoid double counting
PP2 = None
#print "Line=",line
for segment in self:
P1,P2 = line.intersect(segment)
#print
#print i,segment
if P1 is not None:
if PP1 is None and PP2 is None:
count += 1
elif PP1 is not None and PP2 is not None and \
not eq(P1,PP1) and not eq(P1,PP2):
count += 1
elif PP1 is not None and not eq(P1,PP1):
count += 1
elif PP2 is not None and not eq(P1,PP2):
count += 1
if P2 is not None:
if eq(P1,P2):
P2 = None
elif PP1 is None and PP2 is None:
count += 1
elif PP1 is not None and PP2 is not None and \
not eq(P2,PP1) and not eq(P2,PP2):
count += 1
elif PP1 is not None and not eq(P2,PP1):
count += 1
elif PP2 is not None and not eq(P2,PP2):
count += 1
#print P1,P2,count
PP1 = P1
PP2 = P2
#print "Count=",count
return bool(count&1)
#----------------------------------------------------------------------
# Invert the whole path
#----------------------------------------------------------------------
def invert(self):
new = []
for segment in reversed(self):
segment.invert()
new.append(segment)
del self[:]
self.extend(new)
reverse = invert
#----------------------------------------------------------------------
# Split path into contours
# This not only SPLITs path to contours,
# it also takes unsorted segments and JOINs them to closed loops if possible
# FIXME: If this is true, this should be probably called reconstructContours()
#----------------------------------------------------------------------
def split2contours(self, acc=EPSV):
if not self: return []
path = Path(self.name, self.color)
paths = [path]
# Push first element as start point
path.append(self.pop(0))
# Repeat until all segments are used
while self:
# End point
end = path[-1].B
# Find the segment that starts after the last one
for i,segment in enumerate(self):
# Try starting point
if eq(end, segment.A, acc):
path.append(segment)
del self[i]
break
# Try ending point (inverse)
if eq(end, segment.B, acc):
segment.invert()
path.append(segment)
del self[i]
break
else:
# Start point
start = path[0].A
# Find the segment that starts after the last one
for i,segment in enumerate(self):
# Try starting point
if eq(start, segment.A, acc):
segment.invert()
path.insert(0,segment)
del self[i]
break
# Try ending point (inverse)
if eq(start, segment.B, acc):
path.insert(0,segment)
del self[i]
break
else:
# Not found push a path start point and
path = Path(self.name, self.color)
paths.append(path)
path.append(self.pop(0))
# Correct ending points of the contours
# for path in paths:
# closed = path.isClosed()
# end = path[0].B
# for segment in path[1:]:
# segment.setStart(end)
# end = segment.B
# if closed:
# path[0].setStart(end)
return paths
#----------------------------------------------------------------------
# Return path with offset
#----------------------------------------------------------------------
def offset(self, offset, name=None):
#start = time.time()
if name is None: name = self.name
path = Path(name, self.color)
if self.isClosed():
prev = self[-1]
Op = prev.orthogonalEnd()
Eo = prev.B + Op*offset
else:
prev = None
Op = None # previous orthogonal
Eo = None
for segment in self:
O = segment.orthogonalStart()
So = segment.A + O*offset
# Join with the previous edge
# inside = False
if Eo is not None and eq(Eo,So):
# possibly a full circle
if segment.type != Segment.LINE and len(self)==1:
path.append(Segment(segment.type, Eo, So, segment.C))
# print "*0*",path[-1]
elif Op is not None:
# if cross*offset
cross = O[0]*Op[1]-O[1]*Op[0]
dot = O[0]*Op[0]+O[1]*Op[1]
#if (prev.type!=Segment.LINE and segment.type!=Segment.LINE) or \
if (abs(cross)>EPSV or dot<0.0) and cross*offset >= 0:
# either a circle
t = Segment.CW if offset> 0 else Segment.CCW
path.append(Segment(t, Eo, So, segment.A))
# print "*A*",path[-1]
else:
# or a straight line if inside
path.append(Segment(Segment.LINE, Eo, So))
# inside = True
# print "*B*",path[-1]
# connect with previous point
O = segment.orthogonalEnd()
Eo = segment.B + O*offset
if (So-Eo).length2() > EPSV2:
if segment.type == Segment.LINE:
path.append(Segment(Segment.LINE, So, Eo))
# print "*C*",path[-1]
else:
# FIXME check for radius + offset > 0.0
path.append(Segment(segment.type, So, Eo, segment.C))
# print "*D*",path[-1]
# if abs(abs(segment.radius - path[-1].radius) - abs(offset)) > EPS:
# print "ERROR", segment.radius - path[-1].radius - abs(offset)
# import pdb; pdb.set_trace()
# Internal line segment?
# if inside and len(path)>2:
# # Check the distance with the intersection point
# P1,P2 = path[-3].intersect(path[-1])
# if P1 or P2:
# M = path[-2].midPoint()
# if P1 and (P1-M).length() < abs(offset)/100:
# #delete segment
# path[-3].setEnd(P1)
# path[-1].setStart(P1)
# del path[-2]
# print "DELETE SEGMENT"
# elif P2:
# pass
Op = O
prev = segment
#print("# path.offset: %g\n"%(time.time()-start))
return path
#----------------------------------------------------------------------
# Return path with offset, overcuts and cleanup
#----------------------------------------------------------------------
def offsetClean(self, offset, overcut=False, name=None):
path = self #deepcopy??
# Remove tiny segments
path.removeZeroLength(abs(offset)/100.)
# Convert very small arcs to lines
path.convert2Lines(abs(offset)/10.)
# Determine offset direction
D = path.direction()
if D==0: D=1
# Offset
opath = path.offset(D*offset, name)
# Post clean
if opath:
opath.intersectSelf()
opath.removeExcluded(path, D*offset)
opath.removeZeroLength(abs(offset)/100.)
opath = opath.split2contours()
if overcut:
for p in opath:
p.overcut(D*offset)
return opath
#----------------------------------------------------------------------
# intersect path with self and mark all intersections
#----------------------------------------------------------------------
def intersectSelf(self):
#FIXME: maybe use intersectPath() to implement this??
points = [] # list of intersection (segment#, order, point) pair
def addPoint(i, P):
# FIXME maybe add sorted and check for duplicates?
if eq(P,self[i].A,EPS): return
if eq(P,self[i].B,EPS): return
oi = self[i].order(P)
points.append((i,oi,P))
# Find all interesection points
for i,si in enumerate(self[:-2]):
if si.type==Segment.LINE and self[i+1].type==Segment.LINE:
j = i+2
else:
j = i+1
while j<len(self):
P1,P2 = si.intersect(self[j])
# skip doublet solution
if P1 is not None and P2 is not None and eq(P1,P2,EPS):
P2 = None
if P1:
addPoint(i,P1)
addPoint(j,P1)
if P2:
addPoint(i,P2)
addPoint(j,P2)
j += 1
# sort accoring to index, and position of point
points.sort(key=itemgetter(0,1))
# split paths
for i,o,P in reversed(points):
split = self[i].split(P)
if not isinstance(split,int):
self.insert(i+1,split)
self[i]._cross = True
return points
#----------------------------------------------------------------------
# mark all segments of intersected path that lay inside another path
#----------------------------------------------------------------------
def markInside(self, path, setinside):
for i,si in enumerate(self):
if path.isInside(si.midPoint()): si._inside.append(setinside)
#----------------------------------------------------------------------
# intersect path with other path and mark all intersections
#----------------------------------------------------------------------
def intersectPath(self, path, setinside=None):
points = [] # list of intersection (segment#, order, point) pair
def addPoint(i, P):
# FIXME maybe add sorted and check for duplicates?
if eq(P,self[i].A,EPS): return
if eq(P,self[i].B,EPS): return
oi = self[i].order(P)
points.append((i,oi,P))
# Find all interesection points
for i,si in enumerate(self):
for cut in path:
P1,P2 = si.intersect(cut)
# skip doublet solution
if P1 is not None and P2 is not None and eq(P1,P2,EPS):
P2 = None
if P1:
addPoint(i,P1)
if P2:
addPoint(i,P2)
# sort accoring to index, and position of point
points.sort(key=itemgetter(0,1))
# split paths
for i,o,P in reversed(points):
split = self[i].split(P)
if not isinstance(split,int):
self.insert(i+1,split)
self[i]._cross = True
#Mark inside segments
#FIXME: for some reason this fails if doing multiple intersections
# in such case you have to intersect all paths and then mark them using markInside() additionaly
if setinside is not None:
self.markInside(path, setinside)
return points
#----------------------------------------------------------------------
# remove the excluded segments from an intersect path
# @param include defines the first segment if it is to be included
# or not
#----------------------------------------------------------------------
def removeExcluded(self, path, offset):
chkofs = abs(offset)*(1.0-EPS)
#--------------------------------------------------------------
# Search if point P is closer than chkofs or not
#--------------------------------------------------------------
def isClose(P, last):
# search in the close vicinity first
i0 = last-min(10, len(path))
if i0<0: i0 += len(path)
for i in range(i0, len(path)):
if path[i].distance(P) < chkofs:
return False, i
for i in range(i0):
if path[i].distance(P) < chkofs:
return False, i
# for x in path:
# if x.distance(P) < chkofs:
# return False
return True, last
last = 0
include, last = isClose(self[0].midPoint(), last)
i = 0
while i < len(self):
cross = self[i]._cross
if not include:
del self[i]
i -= 1
i += 1
if cross: # end of self[i] is a crossing point
# FIXME Can become more intelligent
# check if really it crosses the segment
# or it goes back (only touching)
# Check middle of next path
include,last = isClose(self[i%len(self)].midPoint(), last)
#----------------------------------------------------------------------
# Perform overcut movements on corners, moving at half angle by
# a certain distance
#----------------------------------------------------------------------
def overcut(self, offset):
overcuts= Path("overcuts")
if self.isClosed():
prev = self[-1]
Op = prev.orthogonalEnd()
else:
prev = None
Op = None # previous orthogonal
i = 0
while i<len(self):
segment = self[i]
O = segment.orthogonalStart()
if Op is not None:
cross = O[0]*Op[1]-O[1]*Op[0]
if prev.type==Segment.LINE \
and segment.type==Segment.LINE \
and cross*offset < -EPSV:
# find direction
D = O+Op
D.normalize()
if offset>0.0: D = -D
costheta = O*Op
costheta2 = sqrt((1.0+costheta)/2.0)
distance = abs(offset)*(1.0/costheta2-1.0)
D *= distance
self.insert(i,Segment(Segment.LINE, segment.A, segment.A + D))
self.insert(i+1, Segment(Segment.LINE, segment.A+D, segment.A))
overcuts.append(Segment(Segment.LINE, segment.A, segment.A + D))
i += 2
prev = segment
Op = prev.orthogonalEnd()
i += 1
return overcuts
#----------------------------------------------------------------------
def trochovercut(self, offset, overcut, adaptative, adaptedRadius):
if self.isClosed():
prev = self[-1]
Op = prev.orthogonalEnd()
else:
prev = None
Op = None # previous orthogonal
i = 0
while i<len(self):
segment = self[i]
O = segment.orthogonalStart()
if Op is not None:
cross = O[0]*Op[1]-O[1]*Op[0]
if prev.type==Segment.LINE and segment.type==Segment.LINE and cross*offset < -EPSV:
# find direction
D = O+Op
D.normalize()
if offset>0.0: D = -D
Dpolice = D *0.00001
costheta = O*Op
costheta2 = sqrt((1.0+costheta)/2.0)
distance = abs(offset)*(1.0/costheta2-1.0)
if overcut == 1 and adaptative == 0:
pass
# distance = float(abs(adaptedRadius))
if overcut == 0 and adaptative == 1:
# distance = abs(adaptedRadius)
distance = abs(adaptedRadius)*(1.0/costheta2-1.0)
distance += abs(adaptedRadius)
elif overcut == 1 and adaptative == 1:
distance += abs(adaptedRadius)
D *= distance
if adaptative:
self.insert(i,Segment(Segment.LINE, segment.A, segment.A + Dpolice))
self.insert(i+1, Segment(Segment.LINE, segment.A+Dpolice, segment.A))
self.insert(i+2,Segment(Segment.LINE, segment.A, segment.A + D))
self.insert(i+3, Segment(Segment.LINE, segment.A+D, segment.A))
i += 4
else:
self.insert(i,Segment(Segment.LINE, segment.A, segment.A + D))
self.insert(i+1, Segment(Segment.LINE, segment.A+D, segment.A))
i += 2
prev = segment
Op = prev.orthogonalEnd()
i += 1
#----------------------------------------------------------------------
# @return index of segment that starts with point P
# else return None
#----------------------------------------------------------------------
def hasPoint(self, P):
for i,segment in enumerate(self):
if eq(segment.A,P):
return i
return None
#----------------------------------------------------------------------
# @return True if current Path contains the segment s, with the same type,A, B, and C whenever s has this attribute
#----------------------------------------------------------------------
def hasSeg(self,s):
for seg in self :
if seg.equals(s):
return True
return False
#----------------------------------------------------------------------
# @return True if current Path and other have the same length, and contains all identical segments, in the same order
#----------------------------------------------------------------------
def isidentical(self,other):
if not len(self)== len(other):
return False
for i,seg in enumerate(self):
if not self[i].equals(other[i]):
return False
return True
#----------------------------------------------------------------------
# @return True if distance of P to the current path is < EPS, refering to minimum distance from P to every Segment of path
#----------------------------------------------------------------------
def isOnPath(self,P):
mindist = float("inf")
for s in self:
d = s.distance(P)
if d < mindist :
mindist = d
if mindist < EPS :
return True
else : return False
#----------------------------------------------------------------------
# @return values 1,-1,0,2
# 1 : segment is inside path
# -1 : segment is outside path
# 0 : ambiguous : either seg is on the path, either it intersect the path
# 2 : path is empty
# First we count the intersections of seg with the path
# the intersections added must be different from previous found
# if there is no intersection (nbInter == 0) , the the segment is inside if one of its points is inside, else it is outisde
# if there is one single intersection(nbInter == 1), segment is inside if it has one point inisde
# if there are 2 ore more interesections (nbInter >=2), this is a little ambiguous, since the segment could make a chord on an arc, or could be a chord of a seg
# in this case, we ignore chords, and consider that if 2 points of the seg are on the path, we take the middle of the seg and check if inside or outside
#----------------------------------------------------------------------
def isSegInside(self,seg):
if len(self)==0:
return 2
nbInter = 0
i1 = None
i2 = None
for segpath in self :
a,b = segpath.intersect(seg)
if a is not None and not eq(a,i1) and not eq(a,i2):
nbInter +=1
i1 = a
if b is not None and not eq(b,i1) and not eq(b,i2):
nbInter +=1
i2 = a
if nbInter == 0:
result = 1 if self.isInside(seg.A) else -1
if nbInter == 1:
if self.isOnPath(seg.A):
if self.isOnPath(seg.B) :
result=0
else :
result=1 if self.isInside(seg.B) else -1
elif self.isOnPath(seg.B):
result=1 if self.isInside(seg.A) else -1
else :
result = 0
if nbInter >=2 :
if self.hasSeg(seg):
result =0
else :
if self.isOnPath(seg.A) and self.isOnPath(seg.B):
result = 1 if self.isInside(seg.midPoint()) else -1
else :result =-1
return result
#----------------------------------------------------------------------
# Checks if a path is inside another
# return values
# 1 : other is inside self
# -1 : other is outside self
# 0 : ambiguous; either paths intersect, either identical, either have common segments
# we count intersections between the 2 paths
# if they have 0 intersection, we check if one point of self is inisde other
# else, we consider that the case is ambiguous and return 0
#----------------------------------------------------------------------
def isPathInside(self,other):
path = deepcopy(self)
otherpath = deepcopy(other)
points = path.intersectPath(otherpath)
inter = len(points)>0
if not inter :
inside = other.isInside(self[0].A)
result = 1 if inside else -1
else :
result =0
return result
#----------------------------------------------------------------------
# push back cycle/rotate 0..idx segments to the end
#----------------------------------------------------------------------
def moveBack(self, idx):
self.extend(self[:idx])
del self[:idx]
#----------------------------------------------------------------------
# merge loops
#----------------------------------------------------------------------
def mergeLoops(self, loops):
i = 0
merged = False
while i < len(loops):
loop = loops[i]
if not loop.isClosed():
i += 1
continue
# find if they share a common point
for j,segment in enumerate(self):
k = loop.hasPoint(segment.A)
if k is not None:
if k>0: loop.moveBack(k)
self[j:j] = loop
merged = True
del loops[i]
break
else:
i += 1
return merged
#----------------------------------------------------------------------
# return eulerian paths
# It takes bpath with random segments and tries to order and invert them
# to create longest possible continuous toolpaths that actually makes sense
# FIXME: This probably can be replaced with split2contours() and i've just reinvented wheel LOL
#----------------------------------------------------------------------
def eulerize(self, single=False):
#Find eulerian path of graph
def eulerPath(graph):
# counting the number of vertices with odd degree
odd = [ x for x in graph.keys() if len(graph[x])&1 ]
odd.append( graph.keys()[0] )
if len(odd)>3:
#return None
print("Failed to find eulerian path! Using non-eulerized path instead!")
#FIXME: Probably we should at least find some non-eulerian paths instead?
return graph
stack = [ odd[0] ]
path = []
# main algorithm
while stack:
v = stack[-1]
if graph[v]:
u = graph[v][0]
stack.append(u)
# deleting edge u-v
del graph[u][ graph[u].index(v) ]
del graph[v][0]
else:
path.append( stack.pop() )
return path
#Encode bpath to graph
# bpath segments -> graph nodes
# bpath points -> graph edges
# (yes it's confusing, but it has to be this way)
eulg = {}
for i,segi in enumerate(self):
eulg[i] = []
for i,segi in enumerate(self):
for j,segj in enumerate(self):
if i == j: continue
#TODO: some of these are probably redundant, for now i left it here to be safe:
if eq(segi.B,segj.A) or eq(segi.A,segj.B):
if j not in eulg[i]: eulg[i].append(j)
if eq(segi.B,segj.B) or eq(segi.A,segj.A):
if j not in eulg[i]: eulg[i].append(j)
#Return first subgraph from graph
def getFirstSubGraph(graph):
if len(graph) == 0: return None
subg = {}
todo = [graph.keys()[0]]
while len(todo) > 0:
if todo[0] in graph.keys():
subg[todo[0]] = graph[todo[0]]
todo.extend(graph[todo[0]])
del graph[todo[0]]
del todo[0]
return subg
#Split to multiple graphs if there are subgraphs without interconnecting edges!
subgs = []
subg = getFirstSubGraph(eulg)
while subg is not None:
print("subgraph",subg)
subgs.append(subg)
subg = getFirstSubGraph(eulg)
eulpaths = []
for eulg in subgs:
#Find eulerian path in graph
eulp = eulerPath(eulg)
print("eulerpath",eulp)
#Reconstruct bpath from eulerian graph
eulpath = Path("euler")
lastb = self[eulp[-1]].B
print("--------")
for i in eulp:
seg = self[i]
if not eq(lastb,seg.A):
seg.invert()
#seg._cross=False
print(seg)
eulpath.append(seg)
lastb = seg.B
del eulpath[0]
eulpaths.append(eulpath)
#Return path(s)
if single:
return eulpaths[0]
eulpath = Path("euler")
for p in eulpaths:
print("path",p)
eulpath.extend(p)
return eulpath
return eulpaths
#----------------------------------------------------------------------
# Remove zero length segments
# Replace small arcs with lines
#----------------------------------------------------------------------
def removeZeroLength(self, eps=EPSV):
i = 0
while i<len(self):
#if eq(self[i].A, [227.286, 151.109]): import pdb; pdb.set_trace()
if self[i].length() < eps:
start = self[i].A
del self[i]
# Join segments
if 0<i<len(self):
self[i].setStart(start)
continue
# Convert to line segments ones with small saggita
if self[i].type != Segment.LINE:
if self[i].type == Segment.CCW:
df = self[i].endPhi - self[i].startPhi
else:
df = self[i].startPhi - self[i].endPhi
if df<pi/2.0:
sagitta = self[i].radius * (1.0 - cos(df/2.0))
if sagitta < eps*5:
self[i].change2Line()
i += 1
# Join last and first node if closed
if self and eq(self[0].A, self[-1].B, eps):
self[-1].setEnd(self[0].A)
#----------------------------------------------------------------------
# Convert to LINES small segments
#----------------------------------------------------------------------
def convert2Lines(self, minlen):
for segment in self:
if segment.type == Segment.LINE: continue
if segment.length()<=minlen:
segment.change2Line()
#----------------------------------------------------------------------
# Convert a dxf layer to a list of segments
#----------------------------------------------------------------------
def fromDxf(self, dxf, layer, units=0):
for entity in layer:
self.color = entity.color()
A = dxf.convert(entity.start(), units)
B = dxf.convert(entity.end(), units)
if entity.type == "LINE":
if not eq(A,B):
self.append(Segment(Segment.LINE, A, B))
elif entity.type == "CIRCLE":
center = dxf.convert(entity.center(), units)
self.append(Segment(Segment.CCW, A, B, center))
elif entity.type == "ARC":
# t = entity._invert and Segment.CW or Segment.CCW
t = Segment.CW if entity._invert else Segment.CCW
center = dxf.convert(entity.center(), units)
self.append(Segment(t, A, B, center))
elif entity.type in ("POLYLINE", "LWPOLYLINE", "SPLINE"):
# split it into multiple line segments
xy = to_zip(dxf.convert(entity[10],units),
dxf.convert(entity[20],units))
if entity.isClosed(): xy.append(xy[0])
bulge = entity.bulge()
if not isinstance(bulge,list): bulge = [bulge]*len(xy)
if entity._invert:
# reverse and negate bulge
xy.reverse()
bulge = [-x for x in bulge[::-1]]
for i,(x,y) in enumerate(xy[1:]):
b = bulge[i]
B = Vector(x,y)
if eq(A,B): continue
if abs(b)<EPS:
self.append(Segment(Segment.LINE, A, B))
elif abs(b-1.0)<EPS:
# Semicircle
center = (A+B)/2.0
if b<0.0:
t = Segment.CW
else:
t = Segment.CCW
self.append(Segment(t, A, B, center))
else:
# arc with bulge = b
# b = tan(theta/4)
theta = 4.0*atan(abs(b))
if abs(b)>1.0:
theta = 2.0*pi - theta
AB = A-B
ABlen = AB.length()
d = ABlen / 2.0
r = d / sin(theta/2.0)
C = (A+B)/2.0
try:
OC = sqrt((r-d)*(r+d))
if b<0.0:
t = Segment.CW
else:
t = Segment.CCW
OC = -OC
if abs(b)>1.0:
OC = -OC
center = Vector(C[0] - OC*AB[1]/ABlen,
C[1] + OC*AB[0]/ABlen)
self.append(Segment(t, A, B, center))
except:
self.append(Segment(Segment.LINE, A, B))
A = B
|