1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
|
## image-to-gcode is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2 of the License, or (at your
## option) any later version. image-to-gcode is distributed in the hope
## that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
## the GNU General Public License for more details. You should have
## received a copy of the GNU General Public License along with image-to-gcode;
## if not, write to the Free Software Foundation, Inc., 51 Franklin Street,
## Fifth Floor, Boston, MA 02110-1301 USA
##
## image-to-gcode.py is Copyright (C) 2005 Chris Radek
## chris@timeguy.com
## image-to-gcode.py is Copyright (C) 2006 Jeff Epler
## jepler@unpy.net
#################################################################################
# image-to-gcode #
#################################################################################
from __future__ import absolute_import
import math
import sys
import operator
epsilon = 1e-5
MAXINT = 1000000000
def ball_tool(r,rad):
s = -math.sqrt(rad**2-r**2)
return s
def endmill(r,dia, rough_offset=0.0):
return 0
def vee_common(angle, rough_offset=0.0):
slope = math.tan(math.pi/2.0 - (angle / 2.0) * math.pi / 180.0)
def f(r, dia):
return r * slope
return f
def make_tool_shape(NUMPY,f, wdia, resp, rough_offset=0.0):
# resp is pixel size
res = 1. / resp
wrad = wdia/2.0 + rough_offset
rad = int(math.ceil((wrad-resp/2.0)*res))
if rad < 1: rad = 1
dia = 2*rad+1
hdia = rad
l = []
for x in range(dia):
for y in range(dia):
r = math.hypot(x-hdia, y-hdia) * resp
if r < wrad:
z = f(r, wrad)
l.append(z)
if NUMPY == True:
Image_Matrix = Image_Matrix_Numpy
else:
Image_Matrix = Image_Matrix_List
TOOL = Image_Matrix(dia,dia)
l = []
temp = []
for x in range(dia):
temp.append([])
for y in range(dia):
r = math.hypot(x-hdia, y-hdia) * resp
if r < wrad:
z = f(r, wrad)
l.append(z)
temp[x].append(float(z))
else:
temp[x].append(1e100000)
TOOL.From_List(temp)
TOOL.minus(TOOL.min()+rough_offset)
return TOOL
def amax(seq):
res = 0
for i in seq:
if abs(i) > abs(res): res = i
return res
def group_by_sign(seq, slop=math.sin(math.pi/18), key=lambda x:x):
sign = None
subseq = []
for i in seq:
ki = key(i)
if sign is None:
subseq.append(i)
if ki != 0:
sign = ki / abs(ki)
else:
subseq.append(i)
if sign * ki < -slop:
sign = ki / abs(ki)
yield subseq
subseq = [i]
if subseq: yield subseq
class Convert_Scan_Alternating:
def __init__(self):
self.st = 0
def __call__(self, primary, items):
st = self.st = self.st + 1
if st % 2: items.reverse()
if st == 1: yield True, items
else: yield False, items
def reset(self):
self.st = 0
class Convert_Scan_Increasing:
def __call__(self, primary, items):
yield True, items
def reset(self):
pass
class Convert_Scan_Decreasing:
def __call__(self, primary, items):
items.reverse()
yield True, items
def reset(self):
pass
class Convert_Scan_Upmill:
def __init__(self, slop = math.sin(math.pi / 18)):
self.slop = slop
def __call__(self, primary, items):
for span in group_by_sign(items, self.slop, operator.itemgetter(2)):
if amax([it[2] for it in span]) < 0:
span.reverse()
yield True, span
def reset(self):
pass
class Convert_Scan_Downmill:
def __init__(self, slop = math.sin(math.pi / 18)):
self.slop = slop
def __call__(self, primary, items):
for span in group_by_sign(items, self.slop, operator.itemgetter(2)):
if amax([it[2] for it in span]) > 0:
span.reverse()
yield True, span
def reset(self):
pass
class Reduce_Scan_Lace:
def __init__(self, converter, slope, keep):
self.converter = converter
self.slope = slope
self.keep = keep
def __call__(self, primary, items):
slope = self.slope
keep = self.keep
if primary:
idx = 3
test = operator.le
else:
idx = 2
test = operator.ge
def bos(j):
return j - j % keep
def eos(j):
if j % keep == 0: return j
return j + keep - j%keep
for i, (flag, span) in enumerate(self.converter(primary, items)):
subspan = []
a = None
for i, si in enumerate(span):
ki = si[idx]
if a is None:
if test(abs(ki), slope):
a = b = i
else:
if test(abs(ki), slope):
b = i
else:
if i - b < keep: continue
yield True, span[bos(a):eos(b+1)]
a = None
if a is not None:
yield True, span[a:]
def reset(self):
self.converter.reset()
#############
class Reduce_Scan_Lace_new:
def __init__(self, converter, depth, keep):
self.converter = converter
self.depth = depth
self.keep = keep
def __call__(self, primary, items):
keep = self.keep
max_z_cut = self.depth # set a max z value to cut
def bos(j):
return j - j % keep
def eos(j):
if j % keep == 0: return j
return j + keep - j%keep
for i, (flag, span) in enumerate(self.converter(primary, items)):
subspan = []
a = None
for i, si in enumerate(span):
ki = si[1] # This is (x,y,z)
z_value = ki[2] # Get the z value from ki
if a is None:
if z_value < max_z_cut:
a = b = i
else:
if z_value < max_z_cut:
b = i
else:
if i - b < keep: continue
yield True, span[bos(a):eos(b+1)]
a = None
if a is not None:
yield True, span[a:]
def reset(self):
self.converter.reset()
#############
class Converter:
def __init__(self, BIG, \
image, units, tool_shape, pixelsize, pixelstep, safetyheight, tolerance,\
feed, convert_rows, convert_cols, cols_first_flag, border, entry_cut,\
roughing_delta, roughing_feed, xoffset, yoffset, splitstep, header, \
postscript, edge_offset, disable_arcs):
self.BIG = BIG
self.image = image
self.units = units
self.tool_shape = tool_shape
self.pixelsize = pixelsize
self.safetyheight = safetyheight
self.tolerance = tolerance
self.base_feed = feed
self.convert_rows = convert_rows
self.convert_cols = convert_cols
self.cols_first_flag = cols_first_flag
self.entry_cut = entry_cut
self.roughing_delta = roughing_delta
self.roughing_feed = roughing_feed
self.header = header
self.postscript = postscript
self.border = border
self.edge_offset = edge_offset
self.disable_arcs = disable_arcs
self.xoffset = xoffset
self.yoffset = yoffset
# Split step stuff
splitpixels = 0
if splitstep > epsilon:
pixelstep = int(math.floor(pixelstep * splitstep * 2))
splitpixels = int(math.floor(pixelstep * splitstep ))
self.pixelstep = pixelstep
self.splitpixels = splitpixels
self.cache = {}
w, h = self.w, self.h = image.shape
self.h1 = h
self.w1 = w
###
row_cnt=0
cnt_border = 0
if self.convert_rows != None:
row_cnt = math.ceil( self.w1 / pixelstep) + 2
col_cnt = 0
if self.convert_cols != None:
col_cnt = math.ceil( self.h1 / pixelstep) + 2
if self.roughing_delta != 0:
cnt_mult = math.ceil(self.image.min() / -self.roughing_delta) + 1
else:
cnt_mult = 1
if self.convert_cols != None or self.convert_rows != None:
cnt_border = 2
self.cnt_total = (row_cnt + col_cnt + cnt_border )* cnt_mult
self.cnt = 0.0
def one_pass(self):
g = self.g
g.set_feed(self.feed)
if self.convert_cols and self.cols_first_flag:
self.g.set_plane(19)
self.mill_cols(self.convert_cols, True)
if self.convert_rows: g.safety()
if self.convert_rows:
self.g.set_plane(18)
self.mill_rows(self.convert_rows, not self.cols_first_flag)
if self.convert_cols and not self.cols_first_flag:
self.g.set_plane(19)
if self.convert_rows: g.safety()
self.mill_cols(self.convert_cols, not self.convert_rows)
g.safety()
## mill border ##
if self.convert_cols:
self.convert_cols.reset()
if self.convert_rows:
self.convert_rows.reset()
step_save = self.pixelstep
self.pixelstep = max(self.w1, self.h1) + 1
if self.border == 1 and not self.convert_rows:
if self.convert_cols:
self.g.set_plane(18)
self.mill_rows(self.convert_cols, True)
g.safety()
if self.border == 1 and not self.convert_cols:
if self.convert_rows:
self.g.set_plane(19)
self.mill_cols(self.convert_rows, True)
g.safety()
self.pixelstep = step_save
if self.convert_cols:
self.convert_cols.reset()
if self.convert_rows:
self.convert_rows.reset()
g.safety()
def convert(self):
output_gcode = []
self.g = g = Gcode(safetyheight=self.safetyheight,
tolerance=self.tolerance,
units=self.units,
header=self.header,
postscript=self.postscript,
target=lambda s: output_gcode.append(s),
disable_arcs = self.disable_arcs)
g.begin()
#g.continuous(self.tolerance) #commented V0.7
g.safety()
if self.roughing_delta:
##########################################
self.feed = self.roughing_feed
r = -self.roughing_delta
m = self.image.min()
while r > m:
self.rd = r
self.one_pass()
r = r - self.roughing_delta
if r < m + epsilon:
self.rd = m
self.one_pass()
##########################################
else:
self.feed = self.base_feed
self.rd = self.image.min()
self.one_pass()
##########################################
g.end()
return output_gcode
def get_z(self, x, y):
try:
return min(0, max(self.rd, self.cache[x,y]))
except KeyError:
self.cache[x,y] = d = self.image.height_calc(x,y,self.tool_shape)
return min(0.0, max(self.rd, d))
def get_dz_dy(self, x, y):
y1 = max(0, y-1)
y2 = min(self.image.shape[0]-1, y+1)
dy = self.pixelsize * (y2-y1)
return (self.get_z(x, y2) - self.get_z(x, y1)) / dy
def get_dz_dx(self, x, y):
x1 = max(0, x-1)
x2 = min(self.image.shape[1]-1, x+1)
dx = self.pixelsize * (x2-x1)
return (self.get_z(x2, y) - self.get_z(x1, y)) / dx
def frange(self,start, stop, step):
out = []
i = start
while i < stop:
out.append(i)
i += step
return out
def mill_rows(self, convert_scan, primary):
global STOP_CALC
w1 = self.w1
h1 = self.h1
pixelsize = self.pixelsize
pixelstep = self.pixelstep
pixel_offset = int(math.ceil(self.edge_offset / pixelsize))
jrange = self.frange(self.splitpixels+pixel_offset, w1-pixel_offset, pixelstep)
if jrange[0] != pixel_offset: jrange.insert(0,pixel_offset)
if w1-1-pixel_offset not in jrange: jrange.append(w1-1-pixel_offset)
irange = range(pixel_offset,h1-pixel_offset)
for j in jrange:
self.cnt = self.cnt+1
#progress(self.cnt, self.cnt_total, self.START_TIME, self.BIG )
y = (w1-j-1) * pixelsize + self.yoffset
scan = []
for i in irange:
self.BIG.update()
#if STOP_CALC: return
x = i * pixelsize + self.xoffset
milldata = (i, (x, y, self.get_z(i, j)),
self.get_dz_dx(i, j), self.get_dz_dy(i, j))
scan.append(milldata)
for flag, points in convert_scan(primary, scan):
if flag:
self.entry_cut(self, points[0][0], j, points)
for p in points:
self.g.cut(*p[1])
self.g.flush()
def mill_cols(self, convert_scan, primary):
global STOP_CALC
w1 = self.w1
h1 = self.h1
pixelsize = self.pixelsize
pixelstep = self.pixelstep
pixel_offset = int(math.ceil(self.edge_offset / pixelsize))
jrange = self.frange(self.splitpixels+pixel_offset, h1-pixel_offset, pixelstep)
if jrange[0] != pixel_offset: jrange.insert(0,pixel_offset)
if h1-1-pixel_offset not in jrange: jrange.append(h1-1-pixel_offset)
irange = range(pixel_offset,w1-pixel_offset)
if h1-1-pixel_offset not in jrange: jrange.append(h1-1-pixel_offset)
jrange.reverse()
for j in jrange:
self.cnt = self.cnt+1
#progress(self.cnt, self.cnt_total, self.START_TIME, self.BIG )
x = j * pixelsize + self.xoffset
scan = []
for i in irange:
self.BIG.update()
#if STOP_CALC: return
y = (w1-i-1) * pixelsize + self.yoffset
milldata = (i, (x, y, self.get_z(j, i)),
self.get_dz_dy(j, i), self.get_dz_dx(j, i))
scan.append(milldata)
for flag, points in convert_scan(primary, scan):
if flag:
self.entry_cut(self, j, points[0][0], points)
for p in points:
self.g.cut(*p[1])
self.g.flush()
def convert(*args, **kw):
return Converter(*args, **kw).convert()
class SimpleEntryCut:
def __init__(self, feed):
self.feed = feed
def __call__(self, conv, i0, j0, points):
p = points[0][1]
if self.feed:
conv.g.set_feed(self.feed)
conv.g.safety()
conv.g.rapid(p[0], p[1])
if self.feed:
conv.g.set_feed(conv.feed)
# Calculate the portion of the arc to do so that none is above the
# safety height (that's just silly)
def circ(r,b):
z = r**2 - (r-b)**2
if z < 0: z = 0
return z**.5
class ArcEntryCut:
def __init__(self, feed, max_radius):
self.feed = feed
self.max_radius = max_radius
def __call__(self, conv, i0, j0, points):
if len(points) < 2:
p = points[0][1]
if self.feed:
conv.g.set_feed(self.feed)
conv.g.safety()
conv.g.rapid(p[0], p[1])
if self.feed:
conv.g.set_feed(conv.feed)
return
p1 = points[0][1]
p2 = points[1][1]
z0 = p1[2]
lim = int(math.ceil(self.max_radius / conv.pixelsize))
r = range(1, lim)
if self.feed:
conv.g.set_feed(self.feed)
conv.g.safety()
x, y, z = p1
pixelsize = conv.pixelsize
cx = cmp(p1[0], p2[0])
cy = cmp(p1[1], p2[1])
radius = self.max_radius
if cx != 0:
h1 = conv.h1
for di in r:
dx = di * pixelsize
i = i0 + cx * di
if i < 0 or i >= h1: break
z1 = conv.get_z(i, j0)
dz = (z1 - z0)
if dz <= 0: continue
if dz > dx:
conv.g.write("(case 1)")
radius = dx
break
rad1 = (dx * dx / dz + dz) / 2
if rad1 < radius:
radius = rad1
if dx > radius:
break
z1 = min(p1[2] + radius, conv.safetyheight)
x1 = p1[0] + cx * circ(radius, z1 - p1[2])
conv.g.rapid(x1, p1[1])
conv.g.cut(z=z1)
I = - cx * circ(radius, z1 - p1[2])
K = (p1[2] + radius) - z1
conv.g.flush(); conv.g.lastgcode = None
if cx > 0:
#conv.g.write("G3 X%f Z%f R%f" % (p1[0], p1[2], radius)) #G3
conv.g.write("G3 X%f Z%f I%f K%f" % (p1[0], p1[2], I, K))
else:
#conv.g.write("G2 X%f Z%f R%f" % (p1[0], p1[2], radius)) #G2
conv.g.write("G2 X%f Z%f I%f K%f" % (p1[0], p1[2], I, K))
conv.g.lastx = p1[0]
conv.g.lasty = p1[1]
conv.g.lastz = p1[2]
else:
w1 = conv.w1
for dj in r:
dy = dj * pixelsize
j = j0 - cy * dj
if j < 0 or j >= w1: break
z1 = conv.get_z(i0, j)
dz = (z1 - z0)
if dz <= 0: continue
if dz > dy:
radius = dy
break
rad1 = (dy * dy / dz + dz) / 2
if rad1 < radius: radius = rad1
if dy > radius: break
z1 = min(p1[2] + radius, conv.safetyheight)
y1 = p1[1] + cy * circ(radius, z1 - p1[2])
conv.g.rapid(p1[0], y1)
conv.g.cut(z=z1)
J = -cy * circ(radius, z1 - p1[2])
K = (p1[2] + radius) - z1
conv.g.flush(); conv.g.lastgcode = None
if cy > 0:
#conv.g.write("G2 Y%f Z%f R%f" % (p1[1], p1[2], radius)) #G2
conv.g.write("G2 Y%f Z%f J%f K%f" % (p1[1], p1[2], J, K))
else:
#conv.g.write("G3 Y%f Z%f R%f" % (p1[1], p1[2], radius)) #G3
conv.g.write("G3 Y%f Z%f J%f K%f" % (p1[1], p1[2], J, K))
conv.g.lastx = p1[0]
conv.g.lasty = p1[1]
conv.g.lastz = p1[2]
if self.feed:
conv.g.set_feed(conv.feed)
class Image_Matrix_List: #Nested list (no Numpy)
def __init__(self, width=0, height=0):
self.width = width
self.height = height
self.matrix = []
self.shape = [width, height]
def __call__(self,i,j):
return self.matrix[i][j]
def Assign(self,i,j,val):
self.matrix[i][j] = float(val)
def From_List(self,input_list):
s = len(input_list)
self.width = s
self.height = s
for x in range(s):
self.api()
for y in range(s):
self.apj(x,float(input_list[x][y]))
def FromImage(self, im, pil_format):
global STOP_CALC
self.matrix = []
if pil_format:
him,wim = im.size
for i in range(0,wim):
self.api()
for j in range(0,him):
pix = im.getpixel((j,i))
self.apj(i,pix)
else:
him = im.width()
wim = im.height()
for i in range(0,wim):
self.api()
for j in range(0,him):
try: pix = im.get(j,i).split()
except: pix = im.get(j,i)
self.apj(i,pix[0])
self.width = wim
self.height = him
self.shape = [wim, him]
self.t_offset = 0
def pad_w_zeros(self,tool):
ts = tool.width
for i in range(len(self.matrix),self.width+ts):
self.api()
for i in range(0,len(self.matrix)):
for j in range(len(self.matrix[i]),self.height+ts):
self.apj(i,-1e1000000)
def height_calc(self,x,y,tool):
ts = tool.width
d = -1e1000000
ilow = (int)(x-(ts-1)/2)
ihigh = (int)(x+(ts-1)/2+1)
jlow = (int)(y-(ts-1)/2)
jhigh = (int)(y+(ts-1)/2+1)
icnt = 0
for i in range( ilow , ihigh):
jcnt = 0
for j in range( jlow , jhigh):
d = max( d, self(j,i) - tool(jcnt,icnt))
jcnt = jcnt+1
icnt = icnt+1
return d
def min(self):
minval = 1e1000000
for i in range(0,self.width):
for j in range(0,self.height):
minval = min(minval,self.matrix[i][j])
return minval
def max(self):
maxval = -1e1000000
for i in range(0,self.width):
for j in range(0,self.height):
maxval = max(maxval,self.matrix[i][j])
return maxval
def api(self):
self.matrix.append([])
def apj(self,i,val):
fval = float(val)
self.matrix[i].append(fval)
def mult(self,val):
fval = float(val)
icnt=0
for i in self.matrix:
jcnt = 0
for j in i:
self.matrix[icnt][jcnt] = fval * j
jcnt = jcnt + 1
icnt=icnt+1
def minus(self,val):
fval = float(val)
icnt=0
for i in self.matrix:
jcnt = 0
for j in i:
self.matrix[icnt][jcnt] = j - fval
jcnt = jcnt + 1
icnt=icnt+1
class Image_Matrix_Numpy:
def __init__(self, width=2, height=2):
import numpy
self.width = width
self.height = height
self.matrix = numpy.zeros((width, height), 'Float32')
self.shape = [width, height]
self.t_offset = 0
def __call__(self,i,j):
return self.matrix[i+self.t_offset,j+self.t_offset]
def Assign(self,i,j,val):
fval=float(val)
self.matrix[i+self.t_offset,j+self.t_offset]=fval
def From_List(self,input_list):
import numpy
s = len(input_list)
self.width = s
self.height = s
self.matrix = numpy.zeros((s, s), 'Float32')
for x in range(s):
for y in range(s):
self.matrix[x,y]=float(input_list[x][y])
def FromImage(self, im, pil_format):
import numpy
global STOP_CALC
self.matrix = []
if pil_format:
him,wim = im.size
self.matrix = numpy.zeros((wim, him), 'Float32')
for i in range(0,wim):
for j in range(0,him):
pix = im.getpixel((j,i))
self.matrix[i,j] = float(pix)
else:
him = im.width()
wim = im.height()
self.matrix = numpy.zeros((wim, him), 'Float32')
for i in range(0,wim):
for j in range(0,him):
try: pix = im.get(j,i).split()
except: pix = im.get(j,i)
self.matrix[i,j] = float(pix[0])
self.width = wim
self.height = him
self.shape = [wim, him]
self.t_offset = 0
def pad_w_zeros(self,tool):
import numpy
ts = tool.width
self.t_offset = (ts-1)/2
to = self.t_offset
w, h = self.shape
w1 = w + ts-1
h1 = h + ts-1
temp = numpy.zeros((w1, h1), 'Float32')
for j in range(0, w1):
for i in range(0, h1):
temp[j,i] = -1e1000000
temp[to:to+w, to:to+h] = self.matrix
self.matrix = temp
def height_calc(self,x,y,tool):
to = self.t_offset
ts = tool.width
d= -1e100000
m1 = self.matrix[y:y+ts, x:x+ts]
d = (m1 - tool.matrix).max()
return d
def min(self):
return self.matrix[self.t_offset:self.t_offset+self.width,
self.t_offset:self.t_offset+self.height].min()
def max(self):
return self.matrix[self.t_offset:self.t_offset+self.width,
self.t_offset:self.t_offset+self.height].max()
def mult(self,val):
self.matrix = self.matrix * float(val)
def minus(self,val):
self.matrix = self.matrix - float(val)
################################################################################
# Author.py #
# A component of emc2 #
################################################################################
# Compute the 3D distance from the line segment l1..l2 to the point p.
# (Those are lower case L1 and L2)
def dist_lseg(l1, l2, p):
x0, y0, z0 = l1
xa, ya, za = l2
xi, yi, zi = p
dx = xa-x0
dy = ya-y0
dz = za-z0
d2 = dx*dx + dy*dy + dz*dz
if d2 == 0: return 0
t = (dx * (xi-x0) + dy * (yi-y0) + dz * (zi-z0)) / d2
if t < 0: t = 0
if t > 1: t = 1
dist2 = (xi - x0 - t*dx)**2 + (yi - y0 - t*dy)**2 + (zi - z0 - t*dz)**2
return dist2 ** .5
def rad1(x1,y1,x2,y2,x3,y3):
x12 = x1-x2
y12 = y1-y2
x23 = x2-x3
y23 = y2-y3
x31 = x3-x1
y31 = y3-y1
den = abs(x12 * y23 - x23 * y12)
if abs(den) < 1e-5: return MAXINT
return math.hypot(float(x12), float(y12)) * math.hypot(float(x23), float(y23)) * math.hypot(float(x31), float(y31)) / 2 / den
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self): return "<%f,%f>" % (self.x, self.y)
def __sub__(self, other):
return Point(self.x - other.x, self.y - other.y)
def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)
def __mul__(self, other):
return Point(self.x * other, self.y * other)
__rmul__ = __mul__
def cross(self, other):
return self.x * other.y - self.y * other.x
def dot(self, other):
return self.x * other.x + self.y * other.y
def mag(self):
return math.hypot(self.x, self.y)
def mag2(self):
return self.x**2 + self.y**2
def cent1(x1,y1,x2,y2,x3,y3):
P1 = Point(x1,y1)
P2 = Point(x2,y2)
P3 = Point(x3,y3)
den = abs((P1-P2).cross(P2-P3))
if abs(den) < 1e-5: return MAXINT, MAXINT
alpha = (P2-P3).mag2() * (P1-P2).dot(P1-P3) / 2 / den / den
beta = (P1-P3).mag2() * (P2-P1).dot(P2-P3) / 2 / den / den
gamma = (P1-P2).mag2() * (P3-P1).dot(P3-P2) / 2 / den / den
Pc = alpha * P1 + beta * P2 + gamma * P3
return Pc.x, Pc.y
def arc_center(plane, p1, p2, p3):
x1, y1, z1 = p1
x2, y2, z2 = p2
x3, y3, z3 = p3
if plane == 17: return cent1(x1,y1,x2,y2,x3,y3)
if plane == 18: return cent1(x1,z1,x2,z2,x3,z3)
if plane == 19: return cent1(y1,z1,y2,z2,y3,z3)
def arc_rad(plane, P1, P2, P3):
if plane is None: return MAXINT
x1, y1, z1 = P1
x2, y2, z2 = P2
x3, y3, z3 = P3
if plane == 17: return rad1(x1,y1,x2,y2,x3,y3)
if plane == 18: return rad1(x1,z1,x2,z2,x3,z3)
if plane == 19: return rad1(y1,z1,y2,z2,y3,z3)
return None, 0
def get_pts(plane, x,y,z):
if plane == 17: return x,y
if plane == 18: return x,z
if plane == 19: return y,z
def one_quadrant(plane, c, p1, p2, p3):
xc, yc = c
x1, y1 = get_pts(plane, p1[0],p1[1],p1[2])
x2, y2 = get_pts(plane, p2[0],p2[1],p2[2])
x3, y3 = get_pts(plane, p3[0],p3[1],p3[2])
def sign(x):
if abs(x) < 1e-5: return 0
if x < 0: return -1
return 1
signs = set((
(sign(x1-xc),sign(y1-yc)),
(sign(x2-xc),sign(y2-yc)),
(sign(x3-xc),sign(y3-yc))
))
if len(signs) == 1: return True
if (1,1) in signs:
signs.discard((1,0))
signs.discard((0,1))
if (1,-1) in signs:
signs.discard((1,0))
signs.discard((0,-1))
if (-1,1) in signs:
signs.discard((-1,0))
signs.discard((0,1))
if (-1,-1) in signs:
signs.discard((-1,0))
signs.discard((0,-1))
if len(signs) == 1: return True
def arc_dir(plane, c, p1, p2, p3):
xc, yc = c
x1, y1 = get_pts(plane, p1[0],p1[1],p1[2])
x2, y2 = get_pts(plane, p2[0],p2[1],p2[2])
x3, y3 = get_pts(plane, p3[0],p3[1],p3[2])
theta_start = math.atan2(y1-yc, x1-xc)
theta_mid = math.atan2(y2-yc, x2-xc)
theta_end = math.atan2(y3-yc, x3-xc)
if theta_mid < theta_start:
theta_mid = theta_mid + 2 * math.pi
while theta_end < theta_mid:
theta_end = theta_end + 2 * math.pi
return theta_end < 2 * math.pi
def arc_fmt(plane, c1, c2, p1):
x, y, z = p1
if plane == 17: return "I%.4f J%.4f" % (c1-x, c2-y)
if plane == 18: return "I%.4f K%.4f" % (c1-x, c2-z)
if plane == 19: return "J%.4f K%.4f" % (c1-y, c2-z)
# Perform Douglas-Peucker simplification on the path 'st' with the specified
# tolerance. The '_first' argument is for internal use only.
#
# The Douglas-Peucker simplification algorithm finds a subset of the input points
# whose path is never more than 'tolerance' away from the original input path.
#
# If 'plane' is specified as 17, 18, or 19, it may find helical arcs in the given
# plane in addition to lines. Note that if there is movement in the plane
# perpendicular to the arc, it will be distorted, so 'plane' should usually
# be specified only when there is only movement on 2 axes
def douglas(st, tolerance=.001, plane=None, _first=True):
if len(st) == 1:
yield "G1", st[0], None
return
l1 = st[0]
l2 = st[-1]
worst_dist = 0
worst = 0
min_rad = MAXINT
max_arc = -1
ps = st[0]
pe = st[-1]
for i, p in enumerate(st):
if p is l1 or p is l2: continue
dist = dist_lseg(l1, l2, p)
if dist > worst_dist:
worst = i
worst_dist = dist
rad = arc_rad(plane, ps, p, pe)
if rad < min_rad:
max_arc = i
min_rad = rad
worst_arc_dist = 0
if min_rad != MAXINT:
c1, c2 = arc_center(plane, ps, st[max_arc], pe)
lx, ly, lz = st[0]
if one_quadrant(plane, (c1, c2), ps, st[max_arc], pe):
for i, (x,y,z) in enumerate(st):
if plane == 17: dist = abs(math.hypot(c1-x, c2-y) - min_rad)
elif plane == 18: dist = abs(math.hypot(c1-x, c2-z) - min_rad)
elif plane == 19: dist = abs(math.hypot(c1-y, c2-z) - min_rad)
else: dist = MAXINT
if dist > worst_arc_dist: worst_arc_dist = dist
mx = (x+lx)/2
my = (y+ly)/2
mz = (z+lz)/2
if plane == 17: dist = abs(math.hypot(c1-mx, c2-my) - min_rad)
elif plane == 18: dist = abs(math.hypot(c1-mx, c2-mz) - min_rad)
elif plane == 19: dist = abs(math.hypot(c1-my, c2-mz) - min_rad)
else: dist = MAXINT
lx, ly, lz = x, y, z
else:
worst_arc_dist = MAXINT
else:
worst_arc_dist = MAXINT
if worst_arc_dist < tolerance and worst_arc_dist < worst_dist:
ccw = arc_dir(plane, (c1, c2), ps, st[max_arc], pe)
if plane == 18: ccw = not ccw
yield "G1", ps, None
if ccw:
yield "G3", st[-1], arc_fmt(plane, c1, c2, ps)
else:
yield "G2", st[-1], arc_fmt(plane, c1, c2, ps)
elif worst_dist > tolerance:
if _first: yield "G1", st[0], None
for i in douglas(st[:worst+1], tolerance, plane, False):
yield i
yield "G1", st[worst], None
for i in douglas(st[worst:], tolerance, plane, False):
yield i
if _first: yield "G1", st[-1], None
else:
if _first: yield "G1", st[0], None
if _first: yield "G1", st[-1], None
# For creating rs274ngc files
class Gcode:
def __init__(self, homeheight = 1.5, safetyheight = 0.04,
tolerance=0.001, units="G20", header="", postscript="",
target=lambda s: sys.stdout.write(s + "\n"),
disable_arcs = False):
self.lastx = self.lasty = self.lastz = self.lasta = None
self.lastgcode = self.lastfeed = None
self.homeheight = homeheight
self.safetyheight = self.lastz = safetyheight
self.tolerance = tolerance
self.units = units
self.cuts = []
self.write = target
self.time = 0
self.plane = None
self.header = header
self.postscript = postscript
self.disable_arcs = disable_arcs
def set_plane(self, p):
if (not self.disable_arcs):
assert p in (17,18,19)
if p != self.plane:
self.plane = p
self.write("G%d" % p)
# This function write header and move to safety height
def begin(self):
self.write(self.header)
#self.write(self.units)
if not self.disable_arcs:
self.write("G91.1")
#self.safety()
#self.rapid(z=self.safetyheight)
self.write("G0 Z%.4f" % (self.safetyheight))
#["G17 G40","G80 G90 G94 G91.1"]
# If any 'cut' moves are stored up, send them to the simplification algorithm
# and actually output them.
#
# This function is usually used internally (e.g., when changing from a cut
# to a rapid) but can be called manually as well. For instance, when
# a contouring program reaches the end of a row, it may be desirable to enforce
# that the last 'cut' coordinate is actually in the output file, and it may
# give better performance because this means that the simplification algorithm
# will examine fewer points per run.
def flush(self):
if not self.cuts: return
for move, (x, y, z), cent in douglas(self.cuts, self.tolerance, self.plane):
if cent:
self.write("%s X%.4f Y%.4f Z%.4f %s" % (move, x, y, z, cent))
self.lastgcode = None
self.lastx = x
self.lasty = y
self.lastz = z
else:
self.move_common(x, y, z, gcode="G1")
self.cuts = []
def end(self):
#"""End the program"""
self.flush()
self.safety()
self.write(self.postscript)
# """\
#Set exact path mode. Note that unless self.tolerance is set to zero,
#the simplification algorithm may still skip over specified points."""
#def exactpath(self):
# self.write("G61")
# Set continuous mode.
#def continuous(self, tolerance=0.0): #commented V0.7
# if tolerance > 0.0: #commented V0.7
# self.write("G64 P%.4f" % tolerance)#commented V0.7
# else: #commented V0.7
# self.write("G64") #commented V0.7
def rapid(self, x=None, y=None, z=None, a=None):
#"Perform a rapid move to the specified coordinates"
self.flush()
self.move_common(x, y, z, a, "G0")
def move_common(self, x=None, y=None, z=None, a=None, gcode="G0"):
#"An internal function used for G0 and G1 moves"
gcodestring = xstring = ystring = zstring = astring = ""
if x == None: x = self.lastx
if y == None: y = self.lasty
if z == None: z = self.lastz
if a == None: a = self.lasta
if x != self.lastx:
xstring = " X%.4f" % (x)
self.lastx = x
if y != self.lasty:
ystring = " Y%.4f" % (y)
self.lasty = y
if z != self.lastz:
zstring = " Z%.4f" % (z)
self.lastz = z
if a != self.lasta:
astring = " A%.4f" % (a)
self.lasta = a
if xstring == ystring == zstring == astring == "":
return
if gcode != self.lastgcode:
gcodestring = gcode
self.lastgcode = gcode
cmd = "".join([gcodestring, xstring, ystring, zstring, astring])
if cmd:
self.write(cmd)
def set_feed(self, feed):
#"Set the feed rate to the given value"
self.flush()
self.write("F%.4f" % feed)
def cut(self, x=None, y=None, z=None):
#"Perform a cutting move at the specified feed rate to the specified coordinates"
if self.cuts:
lastx, lasty, lastz = self.cuts[-1]
else:
lastx, lasty, lastz = self.lastx, self.lasty, self.lastz
if x is None: x = lastx
if y is None: y = lasty
if z is None: z = lastz
self.cuts.append([x,y,z])
def home(self):
#"Go to the 'home' height at rapid speed"
self.flush()
self.rapid(z=self.homeheight)
def safety(self):
#"Go to the 'safety' height at rapid speed"
self.flush()
self.rapid(z=self.safetyheight)
|