1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
# -*- coding: latin1 -*-
#
# Author: vvlachoudis@gmail.com
# Date: 20-Oct-2015
from __future__ import absolute_import
import sys
import bmath
from Utils import to_zip
#===============================================================================
# Cardinal cubic spline class
#===============================================================================
class CardinalSpline:
def __init__(self, A=0.5):
# The default matrix is the Catmull-Rom splin
# which is equal to Cardinal matrix
# for A = 0.5
#
# Note: Vasilis
# The A parameter should be the fraction in t where
# the second derivative is zero
self.setMatrix(A)
#-----------------------------------------------------------------------
# Set the matrix according to Cardinal
#-----------------------------------------------------------------------
def setMatrix(self, A=0.5):
self.M = []
self.M.append([ -A, 2.-A, A-2., A ])
self.M.append([2.*A, A-3., 3.-2.*A, -A ])
self.M.append([ -A, 0., A, 0.])
self.M.append([ 0., 1., 0, 0.])
#-----------------------------------------------------------------------
# Evaluate Cardinal spline at position t
# @param P list or tuple with 4 points y positions
# @param t [0..1] fraction of interval from points 1..2
# @param k index of starting 4 elements in P
# @return spline evaluation
#-----------------------------------------------------------------------
def __call__(self, P, t, k=1):
T = [t*t*t, t*t, t, 1.0]
R = [0.0]*4
for i in range(4):
for j in range(4):
R[i] += T[j] * self.M[j][i]
y = 0.0
for i in range(4):
y += R[i]*P[k+i-1]
return y
#-----------------------------------------------------------------------
# Return the coefficients of a 3rd degree polynomial
# f(x) = a t^3 + b t^2 + c t + d
# @return [a, b, c, d]
#-----------------------------------------------------------------------
def coefficients(self, P, k=1):
C = [0.0]*4
for i in range(4):
for j in range(4):
C[i] += self.M[i][j] * P[k+j-1]
return C
#-----------------------------------------------------------------------
# Evaluate the value of the spline using the coefficients
#-----------------------------------------------------------------------
def evaluate(self, C, t):
return ((C[0]*t + C[1])*t + C[2])*t + C[3]
#===============================================================================
# Cubic spline ensuring that the first and second derivative are continuous
# adapted from Penelope Manual Appending B.1
# It requires all the points (xi,yi) and the assumption on how to deal
# with the second derviative on the extremeties
# Option 1: assume zero as second derivative on both ends
# Option 2: assume the same as the next or previous one
#===============================================================================
class CubicSpline:
def __init__(self, X, Y):
self.X = X
self.Y = Y
self.n = len(X)
# Option #1
s1 = 0.0 # zero based = s0
sN = 0.0 # zero based = sN-1
# Construct the tri-diagonal matrix
A = []
B = [0.0] * (self.n-2)
for i in range(self.n-2):
A.append([0.0] * (self.n-2))
for i in range(1,self.n-1):
hi = self.h(i)
Hi = 2.0*(self.h(i-1) + hi)
j = i-1
A[j][j] = Hi
if i+1<self.n-1:
A[j][j+1] = A[j+1][j] = hi
if i==1:
B[j] = 6.*(self.d(i) - self.d(j)) - hi*s1
elif i<self.n-2:
B[j] = 6.*(self.d(i) - self.d(j))
else:
B[j] = 6.*(self.d(i) - self.d(j)) - hi*sN
# from pprint import pprint
# print "=========== A ============="
# pprint(A)
# print "=========== B ============="
# pprint(B)
# Solve by gauss elimination
# AA = bmath.Matrix(A)
# BB = []
# for b in B: BB.append([b])
# BB = bmath.Matrix(BB)
# print AA
# print BB
# AA.inv()
# print AA*BB
self.s = bmath.gauss(A,B)
self.s.insert(0,s1)
self.s.append(sN)
# print ">> s <<"
# pprint(self.s)
#-----------------------------------------------------------------------
def h(self, i):
return self.X[i+1] - self.X[i]
#-----------------------------------------------------------------------
def d(self, i):
return (self.Y[i+1] - self.Y[i]) / (self.X[i+1] - self.X[i])
#-----------------------------------------------------------------------
def coefficients(self, i):
"""return coefficients of cubic spline for interval i a*x**3+b*x**2+c*x+d"""
hi = self.h(i)
si = self.s[i]
si1 = self.s[i+1]
xi = self.X[i]
xi1 = self.X[i+1]
fi = self.Y[i]
fi1 = self.Y[i+1]
a = 1./(6.*hi)*(si*xi1**3 - si1*xi**3 + 6.*(fi*xi1 - fi1*xi)) + hi/6.*(si1*xi - si*xi1)
b = 1./(2.*hi)*(si1*xi**2 - si*xi1**2 + 2*(fi1 - fi)) + hi/6.*(si - si1)
c = 1./(2.*hi)*(si*xi1 - si1*xi)
d = 1./(6.*hi)*(si1-si)
return [d,c,b,a]
#-----------------------------------------------------------------------
def __call__(self, i, x):
# FIXME should interpolate to find the interval
C = self.coefficients(i)
return ((C[0]*x + C[1])*x + C[2])*x + C[3]
#-----------------------------------------------------------------------
# @return evaluation of cubic spline at x using coefficients C
#-----------------------------------------------------------------------
def evaluate(self, C, x):
return ((C[0]*x + C[1])*x + C[2])*x + C[3]
#-----------------------------------------------------------------------
# Return evaluated derivative at x using coefficients C
#-----------------------------------------------------------------------
def derivative(self, C, x):
a = 3.0*C[0] # derivative coefficients
b = 2.0*C[1] # ... for sampling with rejection
c = C[2]
return (3.0*C[0]*x + 2.0*C[1])*x + C[2]
# ------------------------------------------------------------------------------
# Convert a B-spline to polyline with a fixed number of segments
#
# FIXME to become adaptive
# ------------------------------------------------------------------------------
def spline2Polyline(xyz, degree, closed, segments, knots):
# Check if last point coincide with the first one
if (bmath.Vector(xyz[0])-bmath.Vector(xyz[-1])).length2() < 1e-10:
# it is already closed, treat it as open
closed = False
# FIXME we should verify if it is periodic,.... but...
# I am not sure :)
if closed:
xyz.extend(xyz[:degree])
knots = None
else:
# make base-1
knots.insert(0, 0)
npts = len(xyz)
if degree<1 or degree>3:
#print "invalid degree"
return None,None,None
# order:
k = degree+1
if npts < k:
#print "not enough control points"
return None,None,None
# resolution:
nseg = segments * npts
# WARNING: base 1
b = [0.0]*(npts*3+1) # polygon points
h = [1.0]*(npts+1) # set all homogeneous weighting factors to 1.0
p = [0.0]*(nseg*3+1) # returned curved points
i = 1
for pt in xyz:
b[i] = pt[0]
b[i+1] = pt[1]
b[i+2] = pt[2]
i +=3
#if periodic:
if closed:
_rbsplinu(npts, k, nseg, b, h, p, knots)
else:
_rbspline(npts, k, nseg, b, h, p, knots)
x = []
y = []
z = []
for i in range(1,3*nseg+1,3):
x.append(p[i])
y.append(p[i+1])
z.append(p[i+2])
# for i,xyz in enumerate(zip(x,y,z)):
# print i,xyz
return x,y,z
# ------------------------------------------------------------------------------
# Subroutine to generate a B-spline open knot vector with multiplicity
# equal to the order at the ends.
# c = order of the basis function
# n = the number of defining polygon vertices
# n+2 = index of x[] for the first occurence of the maximum knot vector value
# n+order = maximum value of the knot vector -- $n + c$
# x[] = array containing the knot vector
# ------------------------------------------------------------------------------
def _knot(n, order):
x = [0.0]*(n+order+1)
for i in range(2, n+order+1):
if i>order and i<n+2:
x[i] = x[i-1] + 1.0
else:
x[i] = x[i-1]
return x
# ------------------------------------------------------------------------------
# Subroutine to generate a B-spline uniform (periodic) knot vector.
#
# order = order of the basis function
# n = the number of defining polygon vertices
# n+order = maximum value of the knot vector -- $n + order$
# x[] = array containing the knot vector
# ------------------------------------------------------------------------------
def _knotu(n, order):
x = [0]*(n+order+1)
for i in range(2, n+order+1):
x[i] = float(i-1)
return x
# ------------------------------------------------------------------------------
# Subroutine to generate rational B-spline basis functions--open knot vector
# C code for An Introduction to NURBS
# by David F. Rogers. Copyright (C) 2000 David F. Rogers,
# All rights reserved.
# Name: rbasis
# Subroutines called: none
# Book reference: Chapter 4, Sec. 4. , p 296
# c = order of the B-spline basis function
# d = first term of the basis function recursion relation
# e = second term of the basis function recursion relation
# h[] = array containing the homogeneous weights
# npts = number of defining polygon vertices
# nplusc = constant -- npts + c -- maximum number of knot values
# r[] = array containing the rational basis functions
# r[1] contains the basis function associated with B1 etc.
# t = parameter value
# temp[] = temporary array
# x[] = knot vector
# ------------------------------------------------------------------------------
def _rbasis(c, t, npts, x, h, r):
nplusc = npts + c
temp = [0.0]*(nplusc+1)
# calculate the first order non-rational basis functions n[i]
for i in range(1, nplusc):
if x[i] <= t < x[i+1]:
temp[i] = 1.0
else:
temp[i] = 0.0
# calculate the higher order non-rational basis functions
for k in range(2,c+1):
for i in range(1,nplusc-k+1):
# if the lower order basis function is zero skip the calculation
if temp[i] != 0.0:
d = ((t-x[i])*temp[i])/(x[i+k-1]-x[i])
else:
d = 0.0
# if the lower order basis function is zero skip the calculation
if temp[i+1] != 0.0:
e = ((x[i+k]-t)*temp[i+1])/(x[i+k]-x[i+1])
else:
e = 0.0
temp[i] = d + e
# pick up last point
if t >= x[nplusc]:
temp[npts] = 1.0
# calculate sum for denominator of rational basis functions
s = 0.0
for i in range(1,npts+1):
s += temp[i]*h[i]
# form rational basis functions and put in r vector
for i in range(1, npts+1):
if s != 0.0:
r[i] = (temp[i]*h[i])/s
else:
r[i] = 0
# ------------------------------------------------------------------------------
# Generates a rational B-spline curve using a uniform open knot vector.
#
# C code for An Introduction to NURBS
# by David F. Rogers. Copyright (C) 2000 David F. Rogers,
# All rights reserved.
#
# Name: rbspline.c
# Subroutines called: _knot, rbasis
# Book reference: Chapter 4, Alg. p. 297
#
# b = array containing the defining polygon vertices
# b[1] contains the x-component of the vertex
# b[2] contains the y-component of the vertex
# b[3] contains the z-component of the vertex
# h = array containing the homogeneous weighting factors
# k = order of the B-spline basis function
# nbasis = array containing the basis functions for a single value of t
# nplusc = number of knot values
# npts = number of defining polygon vertices
# p[,] = array containing the curve points
# p[1] contains the x-component of the point
# p[2] contains the y-component of the point
# p[3] contains the z-component of the point
# p1 = number of points to be calculated on the curve
# t = parameter value 0 <= t <= npts - k + 1
# x[] = array containing the knot vector
# ------------------------------------------------------------------------------
def _rbspline(npts, k, p1, b, h, p, x):
nplusc = npts + k
nbasis = [0.0]*(npts+1) # zero and re-dimension the basis array
# generate the uniform open knot vector
if x is None or len(x) != nplusc+1:
x = _knot(npts, k)
icount = 0
# calculate the points on the rational B-spline curve
t = 0
step = float(x[nplusc])/float(p1-1)
for i1 in range(1, p1+1):
if x[nplusc] - t < 5e-6:
t = x[nplusc]
# generate the basis function for this value of t
nbasis = [0.0]*(npts+1) # zero and re-dimension the knot vector and the basis array
_rbasis(k, t, npts, x, h, nbasis)
# generate a point on the curve
for j in range(1, 4):
jcount = j
p[icount+j] = 0.0
# Do local matrix multiplication
for i in range(1, npts+1):
p[icount+j] += nbasis[i]*b[jcount]
jcount += 3
icount += 3
t += step
# ------------------------------------------------------------------------------
# Subroutine to generate a rational B-spline curve using an uniform periodic knot vector
#
# C code for An Introduction to NURBS
# by David F. Rogers. Copyright (C) 2000 David F. Rogers,
# All rights reserved.
#
# Name: rbsplinu.c
# Subroutines called: _knotu, _rbasis
# Book reference: Chapter 4, Alg. p. 298
#
# b[] = array containing the defining polygon vertices
# b[1] contains the x-component of the vertex
# b[2] contains the y-component of the vertex
# b[3] contains the z-component of the vertex
# h[] = array containing the homogeneous weighting factors
# k = order of the B-spline basis function
# nbasis = array containing the basis functions for a single value of t
# nplusc = number of knot values
# npts = number of defining polygon vertices
# p[,] = array containing the curve points
# p[1] contains the x-component of the point
# p[2] contains the y-component of the point
# p[3] contains the z-component of the point
# p1 = number of points to be calculated on the curve
# t = parameter value 0 <= t <= npts - k + 1
# x[] = array containing the knot vector
# ------------------------------------------------------------------------------
def _rbsplinu(npts, k, p1, b, h, p, x=None):
nplusc = npts + k
nbasis = [0.0]*(npts+1) # zero and re-dimension the basis array
# generate the uniform periodic knot vector
if x is None or len(x) != nplusc+1:
# zero and re dimension the knot vector and the basis array
x = _knotu(npts, k)
icount = 0
# calculate the points on the rational B-spline curve
t = k-1
step = (float(npts)-(k-1))/float(p1-1)
for i1 in range(1, p1+1):
if x[nplusc] - t < 5e-6:
t = x[nplusc]
# generate the basis function for this value of t
nbasis = [0.0]*(npts+1)
_rbasis(k, t, npts, x, h, nbasis)
# generate a point on the curve
for j in range(1,4):
jcount = j
p[icount+j] = 0.0
# Do local matrix multiplication
for i in range(1,npts+1):
p[icount+j] += nbasis[i]*b[jcount]
jcount += 3
icount += 3
t += step
# =============================================================================
if __name__ == "__main__":
SPLINE_SEGMENTS = 20
from .dxf import DXF
# from dxfwrite.algebra import CubicSpline, CubicBezierCurve
dxf = DXF(sys.argv[1],"r")
dxf.readFile()
dxf.close()
for name,layer in dxf.layers.items():
for entity in layer.entities:
if entity.type == "SPLINE":
x,y = spline2Polyline(to_zip(entity[10], entity[20]), int(entity[71]), True, SPLINE_SEGMENTS)
#for a,b in zip(x,y):
# print a,b
|