1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
/*
* Copyright (C) 2014-2021 Brian L. Browning
*
* This file is part of Beagle
*
* Beagle is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Beagle is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package imp;
import blbutil.Utilities;
import ints.IndexArray;
import ints.IntArray;
import ints.IntList;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Random;
import java.util.stream.IntStream;
import main.Par;
/**
* <p>Class {@code ImpIbs} identifies haplotypes that share a long
* IBS segment with a specified haplotype.
* </p>
* <p>Instances of {@code ImpIbs} are immutable.
* </p>
* @author Brian L. Browning {@code <browning@uw.edu>}
*/
public final class ImpIbs {
private final ImpData impData;
private final int nRefHaps;
private final long seed;
private final int nSteps;
private final int nHapsPerStep;
private final CodedSteps codedSteps;
private final int[][][] ibsHaps; //[window][targ hap][ibs_set]
/**
* Constructs a new {@code ImpIbs} object from the specified data.
* @param impData the input data for genotype imputation
*
* @throws NullPointerException if {@code impData == null}
*/
public ImpIbs(ImpData impData) {
Par par = impData.par();
this.impData = impData;
this.seed = par.seed();
this.nRefHaps = impData.nRefHaps();
this.nSteps = par.imp_nsteps();
int nStepsPerSegment = Math.round(par.imp_segment()/par.imp_step());
this.nHapsPerStep = (par.imp_states() / nStepsPerSegment);
this.codedSteps = new CodedSteps(impData);
this.ibsHaps = IntStream.range(0, codedSteps.nSteps())
.parallel()
.mapToObj(j -> getIbsHaps(codedSteps, j))
.toArray(int[][][]::new);
}
private int[][] getIbsHaps(CodedSteps codedSteps, int index) {
int nTargHaps = impData.nTargHaps();
int[][] results = new int[nTargHaps][];
int nStepsToMerge = Math.min(nSteps, codedSteps.nSteps() - index);
List<IntList> children = initPartition(codedSteps.get(index));
List<IntList> nextParents = new ArrayList<>(children.size());
initUpdateResults(children, nextParents, results);
for (int i=1; i<nStepsToMerge; ++i) {
int initCapacity = Math.min(nTargHaps, 2*nextParents.size());
List<IntList> parents = nextParents;
nextParents = new ArrayList<>(initCapacity);
IndexArray codedStep = codedSteps.get(index+i);
for (int j=0, nj=parents.size(); j<nj; ++j) {
IntList parent = parents.get(j);
children = partition(parent, codedStep);
updateResults(parent, children, nextParents, results);
}
}
finalUpdateResults(nextParents, results);
return results;
}
private List<IntList> initPartition(IndexArray codedStep) {
IntList[] list = new IntList[codedStep.valueSize()];
IntArray hap2Seq = codedStep.intArray();
int nHaps = hap2Seq.size();
List<IntList> children = new ArrayList<>();
for (int h=nRefHaps; h<nHaps; ++h) {
int seq = hap2Seq.get(h);
if (list[seq]==null) {
list[seq] = new IntList();
children.add(list[seq]);
}
}
for (int h=0; h<nHaps; ++h) {
int seq = hap2Seq.get(h);
if (list[seq]!=null) {
list[seq].add(h);
}
}
return children;
}
private List<IntList> partition(IntList parent, IndexArray codedStep) {
IntList[] list = new IntList[codedStep.valueSize()];
IntArray hap2Seq = codedStep.intArray();
int nParentHaps = parent.size();
List<IntList> children = new ArrayList<>();
int targStart = insPt(parent, nRefHaps);
for (int k=targStart; k<nParentHaps; ++k) {
int hap = parent.get(k);
int seq = hap2Seq.get(hap);
if (list[seq]==null) {
list[seq] = new IntList();
children.add(list[seq]);
}
}
for (int k=0; k<nParentHaps; ++k) {
int hap = parent.get(k);
int seq = hap2Seq.get(hap);
if (list[seq]!=null) {
list[seq].add(hap);
}
}
return children;
}
private void initUpdateResults(List<IntList> children,
List<IntList> nextParents, int[][] result) {
for (int j=0, n=children.size(); j<n; ++j) {
IntList hapList = children.get(j);
int nRef = insPt(hapList, nRefHaps);
if (nRef <= nHapsPerStep) {
setResult(hapList, nRef, hapList.copyOf(nRef), result);
}
else {
nextParents.add(hapList);
}
}
}
private void updateResults(IntList parent, List<IntList> children, List<IntList> nextIbs, int[][] results) {
for (int k=0, nk=children.size(); k<nk; ++k) {
IntList child = children.get(k);
int nChildRef = insPt(child, nRefHaps);
if (nChildRef <= nHapsPerStep) {
int[] ibsList = ibsHaps(parent, child, nChildRef);
setResult(child, nChildRef, ibsList, results);
child.clear();
}
else {
nextIbs.add(child);
}
}
}
private int[] ibsHaps(IntList parent, IntList child, int nChildRef) {
IntList combined = new IntList(nHapsPerStep);
for (int j=0; j<nChildRef; ++j) {
combined.add(child.get(j));
}
int size = nHapsPerStep - nChildRef;
Random rand = new Random(seed + parent.get(0));
IntList uniqToParent = uniqToParent(parent, child, nChildRef);
int[] randSubset = randomSubset(uniqToParent, size, rand);
for (int i : randSubset) {
combined.add(i);
}
int[] ia = combined.toArray();
Arrays.sort(ia); // is this needed?
return ia;
}
private IntList uniqToParent(IntList parent, IntList child, int nChildRef) {
int nChildRefM1 = nChildRef - 1;
int nParentRef = insPt(parent, nRefHaps);
IntList uniqToParent = new IntList(parent.size());
int c = 0;
int cVal = child.get(c);
for (int p=0; p<nParentRef; ++p) {
int pVal = parent.get(p);
while (cVal < pVal && c < nChildRefM1) {
cVal = child.get(++c);
}
if (pVal != cVal) {
uniqToParent.add(pVal);
}
}
return uniqToParent;
}
private static int[] randomSubset(IntList list, int size, Random rand) {
if (list.size() < size) {
size = list.size();
}
int[] ia = list.toArray();
for (int j=0; j<size; ++j) {
int x = rand.nextInt(ia.length-j);
int tmp = ia[j];
ia[j] = ia[j+x];
ia[j+x] = tmp;
}
return Arrays.copyOf(ia, size);
}
private void finalUpdateResults(List<IntList> children, int[][] results) {
for (int j=0, n=children.size(); j<n; ++j) {
IntList child = children.get(j);
int nRef = insPt(child, nRefHaps);
int[] ibsList = child.copyOf(nRef);
if (nHapsPerStep < ibsList.length) {
Random rand = new Random(seed + child.get(0));
Utilities.shuffle(ibsList, rand);
ibsList = Arrays.copyOf(ibsList, nHapsPerStep);
Arrays.sort(ibsList);
}
setResult(child, nRef, ibsList, results);
}
}
private void setResult(IntList child, int firstTargIndex,
int[] ibsHaps, int[][] result) {
for (int j=firstTargIndex, nj=child.size(); j<nj; ++j) {
result[child.get(j) - nRefHaps] = ibsHaps;
}
}
private static int insPt(IntList il, int nRefHaps) {
int index = il.binarySearch(nRefHaps);
return index >= 0 ? index : -index - 1;
}
/**
* Returns an array containing reference haplotype indices that
* that are IBS with the specified target haplotype in an interval
* beginning with the specified step. The returned array will contain fewer
* than {@code this.nHapsPerStep()} haplotypes if the number of reference
* haplotypes that are IBS with specified target haplotype in the specified
* step is less than {@code this.nHapsPerStep()}.
* @param hap a haplotype index
* @param step a step index
* @return an array containing reference haplotype indices that
* that are IBS with the specified target haplotype
* @throws IndexOutOfBoundsException if
* {@code hap < 0 || hap >= this.hapPairs().nHaps()}
* @throws IndexOutOfBoundsException if
* {@code step < 0 || step >= this.nSteps()}
*/
public int[] ibsHaps(int hap, int step) {
return ibsHaps[step][hap].clone();
}
/**
* Return the data for genotype imputation in the marker window.
* @return the data for genotype imputation in the marker window
*/
public ImpData impData() {
return impData;
}
/**
* Returns the coded steps. The coded steps stores the starting marker
* for each step along with the index of the allele sequence carried by
* each haplotype in each step.
* @return the coded steps
*/
public CodedSteps codedSteps() {
return codedSteps;
}
}
|