File: Main.java

package info (click to toggle)
beagle 220722-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 9,644 kB
  • sloc: java: 17,045; sh: 55; makefile: 11
file content (281 lines) | stat: -rw-r--r-- 10,608 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*
 * Copyright (C) 2014-2021 Brian L. Browning
 *
 * This file is part of Beagle
 *
 * Beagle is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Beagle is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
package main;

import blbutil.Const;
import blbutil.Utilities;
import imp.ImpData;
import imp.ImpLS;
import imp.StateProbs;
import java.io.File;
import java.util.Locale;
import java.util.Optional;
import java.util.Random;
import java.util.concurrent.atomic.AtomicReferenceArray;
import phase.FixedPhaseData;
import phase.PhaseBaum1;
import phase.PhaseData;
import phase.PhaseLS;
import phase.Stage2Haps;
import vcf.BasicGT;
import vcf.GT;
import vcf.MarkerIndices;
import vcf.RefTargSlidingWindow;
import vcf.SlidingWindow;
import vcf.TargSlidingWindow;
import vcf.Window;
import vcf.XRefGT;

/**
 * Class {@code Main} is the entry class for the Beagle program. See
 * {@code Par.usage()} and online program documentation for usage instructions.
 *
 * @author Brian L. Browning {@code <browning@uw.edu>}
 */
public class Main {

    /**
     * The program name and version.
     */
    private static final String VERSION = "(version 5.4)";

    /**
     * The program name and commit version.
     */
    public static final String PROGRAM = "beagle.22Jul22.46e.jar";

    /**
     * The command to invoke the program.
     */
    public static final String COMMAND = "java -jar beagle.22Jul22.46e.jar";

    /**
     * The copyright string.
     */
    public static final String COPYRIGHT = "Copyright (C) 2014-2022 Brian L. Browning";

    /**
     * The program name and a brief help message.
     */
    public static final String SHORT_HELP = Main.PROGRAM + " " + VERSION
            + Const.nl + Main.COPYRIGHT
            + Const.nl + "Enter \"" + COMMAND
            + "\" to list command line argument";

    private final Par par;
    private final SlidingWindow slidingWind;
    private final RunStats runStats;
    private final WindowWriter windowWriter;
    private final Random rand;  // generates distinct seed for each window

    /**
     * Entry point to Beagle program. See {@code Parameters.usage()} and program
     * documentation description of valid arguments.
     *
     * @param args command line arguments
     */
    public static void main(String[] args) {
        Locale.setDefault(Locale.US);
        if (args.length == 0) {
            System.out.println(PROGRAM + " " + VERSION);
            System.out.println(COPYRIGHT);
            System.out.println(Par.usage());
            System.exit(0);
        }
        Par par = parameters(args);
        System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism",
                String.valueOf(par.nthreads()));
        RunStats runStats = new RunStats(par);
        runStats.printStartInfo();

        try (SlidingWindow slidingWind = slidingWindow(par);
                WindowWriter winOut = new WindowWriter(par, slidingWind.targSamples())) {
            Main main = new Main(par, slidingWind, winOut, runStats);
            main.phaseAndImpute();
            runStats.printSummaryAndClose(slidingWind.cumTargMarkers(),
                    slidingWind.cumMarkers());
        }
    }

    private Main(Par par, SlidingWindow slidingWindow, WindowWriter windWriter,
            RunStats runStats) {
        this.par = par;
        this.slidingWind = slidingWindow;
        this.runStats = runStats;
        this.windowWriter = windWriter;
        this.rand = new Random(par.seed());
    }

    private static SlidingWindow slidingWindow(Par par) {
        if (par.ref() == null) {
            return TargSlidingWindow.instance(par);
        } else {
            return RefTargSlidingWindow.instance(par);
        }
    }

    private void phaseAndImpute() {
        Optional<Window> optWindow = slidingWind.nextWindow();
        printSampleSummary(optWindow);
        GT overlap = null;
        while (optWindow.isPresent()) {
            Window window = optWindow.get();
            runStats.printWindowUpdate(window);
            FixedPhaseData fpd = new FixedPhaseData(par, slidingWind.ped(),
                window, overlap);
            PhaseData pd = new PhaseData(fpd, rand.nextLong());
            if (fpd.targGT().isPhased()) {
                XRefGT phasedTarg = XRefGT.fromPhasedGT(fpd.targGT(), par.nthreads());
                overlap = printWindow(window, phasedTarg);
            }
            else {
                phaseStage1Variants(pd);
                if (fpd.stage1TargGT().nMarkers()==fpd.targGT().nMarkers()) {
                    XRefGT phasedTarg = pd.estPhase().phasedHaps();
                    overlap = printWindow(window, phasedTarg);
                }
                else {
                    Stage2Haps stage2Haps = phaseStage2Variants(pd);
                    overlap = printWindow(window, stage2Haps);
                }
            }
            optWindow = slidingWind.nextWindow();
        }
        slidingWind.close();
    }

    private void printSampleSummary(Optional<Window> optWindow) {
        if (optWindow.isPresent()) {
            runStats.printSampleSummary(slidingWind.ped(), optWindow.get());
        }
    }

    private void phaseStage1Variants(PhaseData pd) {
        int nIts = par.burnin() + par.iterations();
        double maxBurninSwapRate = 0.01;
        while (pd.it()<nIts) {
            long t0 = System.nanoTime();
            PhaseLS.runStage1(pd);
            runStats.printStage1Info(pd, (System.nanoTime() - t0));
            pd.incrementIt();
            double swapRate = PhaseBaum1.getAndResetSwapRate();
            if (pd.it()<par.burnin() && swapRate<=maxBurninSwapRate) {
                pd.advanceToFirstPhasingIt();
            }
        }
    }

    private Stage2Haps phaseStage2Variants(PhaseData pd) {
        long t0 = System.nanoTime();
        Stage2Haps stage2Haps = PhaseLS.runStage2(pd);
        runStats.printStage2Info(System.nanoTime() - t0);
        return stage2Haps;
    }

    private XRefGT printWindow(Window window, XRefGT phasedTarg) {
        boolean impute = window.indices().nMarkers() != window.indices().nTargMarkers();
        if (impute==false) {
            int mStart = window.indices().prevTargSplice();
            int mEnd = window.indices().nextTargSplice();
            windowWriter.printPhased(phasedTarg, mStart, mEnd);
            return phasedOverlap(window, phasedTarg);
        }
        else {
            long t0 = System.nanoTime();
            ImpData impData = new ImpData(par, window, phasedTarg, window.genMap());
            AtomicReferenceArray<StateProbs> stateProbs = ImpLS.stateProbs(impData);
            int mStart = window.indices().prevSplice();
            int mEnd = window.indices().nextSplice();
            windowWriter.printImputed(impData, mStart, mEnd, stateProbs);
            runStats.imputationNanos(System.nanoTime() - t0);
            runStats.printImputationUpdate();
            return phasedOverlap(window, phasedTarg);
        }
    }

    private GT printWindow(Window window, Stage2Haps stage2Haps) {
        boolean impute = window.indices().nMarkers() != window.indices().nTargMarkers();
        if (impute==false) {
            int mStart = window.indices().prevTargSplice();
            int mEnd = window.indices().nextTargSplice();
            windowWriter.printPhased(stage2Haps, mStart, mEnd);
            return stage2Haps.toBasicGT(window.indices().targOverlapStart(), mEnd);
        } else {
            long t0 = System.nanoTime();
            BasicGT phasedHapMajor = stage2Haps.toBasicGT(0, window.targGT().nMarkers());
            XRefGT phasedTarg = XRefGT.fromPhasedGT(phasedHapMajor, par.nthreads());
            ImpData impData = new ImpData(par, window, phasedTarg, window.genMap());
            AtomicReferenceArray<StateProbs> stateProbs = ImpLS.stateProbs(impData);
            int mStart = window.indices().prevSplice();
            int mEnd = window.indices().nextSplice();
            windowWriter.printImputed(impData, mStart, mEnd, stateProbs);
            runStats.imputationNanos(System.nanoTime() - t0);
            runStats.printImputationUpdate();
            return phasedOverlap(window, phasedTarg);
        }
    }

    private XRefGT phasedOverlap(Window window, XRefGT phasedTarg) {
        assert phasedTarg.isPhased();
        MarkerIndices markerIndices = window.indices();
        int nextOverlap = markerIndices.targOverlapStart();
        int nextSplice = markerIndices.nextTargSplice();
        int nMarkers = nextSplice - nextOverlap;
        return nMarkers==0 ? null : phasedTarg.restrict(nextOverlap, nextSplice);
    }

    /*
     * Checks that certain parameters are consistent, and prints error
     * message and exits if parameters are inconsistent.
     *
     * @param args the command line arguments.
     */
    private static Par parameters(String[] args) {
        // warnings are printed in RunStats.startInfo() method
        Par par = new Par(args);
        checkOutputPrefix(par);
        if (par.window() < 1.1 * par.overlap()) {
            String s = SHORT_HELP + Const.nl
                    + Const.nl + "ERROR: The \"window\" parameter must be at least "
                    + "1.1 times the \"overlap\" parameter"
                    + Const.nl + "Exiting program.";
            Utilities.exit(s);
        }
        return par;
    }

    private static void checkOutputPrefix(Par par) {
        File outPrefix = new File(par.out());
        if (outPrefix.isDirectory()) {
            String s = "ERROR: \"out\" parameter cannot be a directory: \""
                    + par.out() + "\"";
            Utilities.exit(Par.usage() + s);
        }

        File vcfOut = new File(par.out() + ".vcf.gz");
        if (vcfOut.equals(par.ref())) {
            String s = "ERROR: VCF output file equals input file: " + par.ref();
            Utilities.exit(Par.usage() + s);
        }
        if (vcfOut.equals(par.gt())) {
            String s = "ERROR: VCF output file equals input file: " + par.gt();
            Utilities.exit(Par.usage() + s);
        }
    }
}