1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
/*
* Copyright (C) 2014-2021 Brian L. Browning
*
* This file is part of Beagle
*
* Beagle is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Beagle is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package phase;
import main.Par;
/**
* <p>Class {@code PbwtIbsData} contains parameters and data for finding
* haplotypes that share an IBS segment with a target haplotype.</p>
*
* @author Brian L. Browning {@code <browning@uw.edu>}
*/
public class PbwtIbsData {
private static final int BURNIN_CANDIDATES = 100;
private static final int MAX_PHASE_CANDIDATES = 90;
private static final int MIN_PHASE_CANDIDATES = 5;
private static final float MAX_BACKOFF_CM = 0.3f;
private final CodedSteps codedSteps;
private final int nHaps;
private final int nTargHaps;
private final int nCandidates;
private final int nOverlapSteps;
private final int maxBackoffSteps;
private final int stepsPerBatch;
private final int nBatches;
/**
* Constructs a new {@code PbwtIbsData} instance from the specified data.
* @param phaseData the current genotype phase estimates and parameter
* values
* @param codedSteps the coded steps
* @throws IllegalArgumentException if
* {@code phaseData.fpd().stage1Steps() != codedSteps.steps()}
* @throws IllegalArgumentException if
* {@code phaseData.fpd().stage1XRefGT()!=codedSteps.refHaps()}
* @throws IllegalArgumentException if
* {@code phaseData.fpd().targGT().samples()!=codedSteps.targSamples()}
* @throws NullPointerException if
* {@code phaseData == null || codedSteps == null}
*/
public PbwtIbsData(PhaseData phaseData, CodedSteps codedSteps) {
checkConsistency(phaseData, codedSteps);
FixedPhaseData fpd = phaseData.fpd();
Par par = fpd.par();
int nSteps = codedSteps.steps().size();
int nThreads = par.nthreads();
int nIts = par.burnin() + par.iterations();
this.codedSteps = codedSteps;
this.nHaps = fpd.nHaps();
this.nTargHaps = phaseData.fpd().targGT().nHaps();
this.nCandidates = phaseData.it()<nIts ? nCandidates1(phaseData)
: nCandidates2(phaseData);
this.nOverlapSteps = (int) Math.rint(par.buffer() / fpd.ibsStep());
this.maxBackoffSteps = (int) Math.rint(MAX_BACKOFF_CM / fpd.ibsStep());
this.stepsPerBatch = (nSteps + nThreads - 1) / nThreads;
this.nBatches = (nSteps + stepsPerBatch - 1) / stepsPerBatch;
}
private static void checkConsistency(PhaseData phaseData,
CodedSteps codedSteps) {
FixedPhaseData fpd = phaseData.fpd();
if (fpd.stage1Steps()!=codedSteps.steps()
|| fpd.stage1XRefGT()!=codedSteps.refHaps()
|| fpd.targGT().samples()!=codedSteps.targSamples()) {
throw new IllegalArgumentException("inconsistent data");
}
}
private static int nCandidates1(PhaseData phaseData) {
int nCandidates = BURNIN_CANDIDATES;
int it = phaseData.it();
Par par = phaseData.fpd().par();
if (it>=par.burnin()) {
double nItsRemaining = par.burnin() + par.iterations() - it;
double p = (double) nItsRemaining / par.iterations();
nCandidates = (int) Math.round(p*MAX_PHASE_CANDIDATES);
nCandidates = Math.max(nCandidates, MIN_PHASE_CANDIDATES);
}
return Math.min(nCandidates, phaseData.fpd().nHaps());
}
private static int nCandidates2(PhaseData phaseData) {
FixedPhaseData fpd = phaseData.fpd();
int nHaps = fpd.nHaps();
float rare = fpd.par().rare();
float scaleFactor = 0.5f;
int nCandidates = (int) Math.floor(scaleFactor * rare * nHaps);
nCandidates = Math.max(nCandidates, MIN_PHASE_CANDIDATES);
return Math.min(nCandidates, nHaps);
}
/**
* Returns the coded steps.
* @return the codedSteps
*/
public CodedSteps codedSteps() {
return codedSteps;
}
/**
* Returns the total number of target and reference haplotypes.
* @return the total number of target and reference haplotypes
*/
public int nHaps() {
return nHaps;
}
/**
* Returns the number of target haplotypes.
* @return the number of target haplotypes
*/
public int nTargHaps() {
return nTargHaps;
}
/**
* Returns the number of candidate haplotypes
* @return the number of candidate haploytpes
*/
public int nCandidates() {
return nCandidates;
}
/**
* Returns the number of overlap steps
* @return the number of overlap steps
*/
public int nOverlapSteps() {
return nOverlapSteps;
}
/**
* Returns the number of backoff steps
* @return the number of backoff steps
*/
public int maxBackoffSteps() {
return maxBackoffSteps;
}
/**
* Returns the number of steps per batch
* @return the number of steps per batch
*/
public int stepsPerBatch() {
return stepsPerBatch;
}
/**
* Returns the number of batches.
* @return the number of batches
*/
public int nBatches() {
return nBatches;
}
}
|