1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
|
/*
* Copyright (C) 2014-2021 Brian L. Browning
*
* This file is part of Beagle
*
* Beagle is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Beagle is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package imp;
import ints.IndexArray;
import ints.IntArray;
import ints.IntList;
import java.util.Arrays;
import java.util.stream.IntStream;
import java.util.NoSuchElementException;
import main.Par;
import vcf.GT;
import vcf.GeneticMap;
import vcf.MarkerIndices;
import vcf.Markers;
import vcf.RefGT;
import vcf. RefGTRec;
import vcf.Samples;
import vcf.Window;
/**
* <p>Class {@code ImpData} contains the input data for imputation of
* ungenotyped markers.
* </p>
* <p>Instances of class {@code ImpData} are immutable.
* </p>
*
* @author Brian L. Browning {@code <browning@uw.edu>}
*/
public class ImpData {
private static final double MIN_CM_DIST = 1e-7;
private final Par par;
private final MarkerIndices markerIndices;
private final RefGT refGT;
private final GT phasedTarg;
private final int[] targClustStartEnd;
private final int[] refClusterStart;
private final int[] refClusterEnd;
private final IndexArray[] hapToSeq;
private final float[] errProb;
private final double[] pos;
private final float[] pRecomb;
private final float[] weight;
private final int nClusters;
private final int nRefHaps;
private final int nTargHaps;
private final int nInputTargHaps;
private final int nHaps;
/**
* Constructs a new {@code ImpData} instance from the specified data.
* @param par the analysis parameters
* @param window the input data for the current marker window
* @param phasedTarg the phased target genotypes
* @param map the genetic map
*
* @throws IllegalArgumentException if
* {@code window.targGT().markers().equals(phasedTarg.markers() == false}
* @throws IllegalArgumentException if
* {@code window.targGT().samples().equals(phasedTarg.samples()) == false}
* @throws IllegalArgumentException if
* {@code phasedTarg.isPhased() == false}
* @throws NoSuchElementException if {@code window.refGT().isPresent() == false}
* @throws NullPointerException if any parameter is {@code null}
*/
public ImpData(Par par, Window window, GT phasedTarg, GeneticMap map) {
if (window.targGT().markers().equals(phasedTarg.markers())==false) {
throw new IllegalArgumentException("inconsistent markers");
}
if (window.targGT().samples().equals(phasedTarg.samples())==false) {
throw new IllegalArgumentException("inconsistent samples");
}
if (phasedTarg.isPhased() == false) {
throw new IllegalArgumentException("unphased data");
}
this.par = par;
this.markerIndices = window.indices();
this.refGT = window.refGT().get();
int[] targToRef = markerIndices.targMarkerToMarker();
this.phasedTarg = phasedTarg;
double[] targPos = cumPos(phasedTarg.markers(), map);
int[] blockEnd = targBlockEnd(refGT, targToRef);
this.targClustStartEnd = targClustStartEnd(targPos, blockEnd, par.cluster());
this.pos = midPos(targPos, targClustStartEnd);
this.nClusters = targClustStartEnd.length - 1;
this.nRefHaps = refGT.nHaps();
this.nTargHaps = phasedTarg.nHaps();
Samples targSamples = phasedTarg.samples();
this.nInputTargHaps = IntStream.range(0, targSamples.size())
.parallel()
.map(j -> (targSamples.isDiploid(j) ? 2 : 1))
.sum();
this.nHaps = refGT.nHaps() + phasedTarg.nHaps();
this.hapToSeq = hapToSeq(window.restrictRefGT().get(), phasedTarg,
targClustStartEnd);
this.refClusterStart = refClustStart(targClustStartEnd, targToRef);
this.refClusterEnd = refClustEnd(targClustStartEnd, targToRef);
this.errProb = err(par.err(nHaps), targClustStartEnd);
this.pRecomb = pRecomb(par.ne(), refGT.nHaps(), pos);
this.weight = wts(refGT.markers(), refClusterStart, refClusterEnd, map);
}
private static double[] cumPos(Markers markers, GeneticMap map) {
double[] cumPos = new double[markers.size()];
double lastGenPos = map.genPos(markers.marker(0));
cumPos[0] = 0.0;
for (int j=1; j<cumPos.length; ++j) {
double genPos = map.genPos(markers.marker(j));
double genDist = Math.max(Math.abs(genPos - lastGenPos), MIN_CM_DIST);
cumPos[j] = cumPos[j-1] + genDist;
lastGenPos = genPos;
}
return cumPos;
}
private static int[] targBlockEnd(RefGT refGT, int[] targToRef) {
IntList intList = new IntList(targToRef.length/4);
IntArray lastHap2Seq = null;
for (int j=0; j<targToRef.length; ++j) {
int refIndex = targToRef[j];
RefGTRec rec = refGT.get(refIndex);
if (rec.isAlleleCoded()==false) {
IntArray hap2Seq = rec.map(0);
if (hap2Seq!=lastHap2Seq) {
if (lastHap2Seq!=null) {
intList.add(j);
}
lastHap2Seq = hap2Seq;
}
}
}
intList.add(targToRef.length);
return intList.toArray();
}
/*
* indices in int[] targBlockEnd are adjusted when method returns
*/
private static int[] targClustStartEnd(double[] rawPos, int[] targBlockEnd,
float clusterDist) {
int[] clustStartEnd = new int[rawPos.length+1];
int size = 1; // clustStartEnd[0] = 0
for (int j=0; j<targBlockEnd.length; ++j) {
int clustStart = clustStartEnd[size - 1];
int blockEnd = targBlockEnd[j];
double startPos = rawPos[clustStart];
for (int m=clustStart+1; m<blockEnd; ++m) {
double pos = rawPos[m];
if ((pos - startPos) > clusterDist) {
clustStartEnd[size++] = m;
startPos = pos;
}
}
clustStartEnd[size++] = blockEnd;
targBlockEnd[j] = size-2; // size = nClusters + 1
}
return Arrays.copyOf(clustStartEnd, size);
}
private static double[] midPos(double[] pos, int[] startEnd) {
return IntStream.range(1, startEnd.length)
.mapToDouble(j -> (pos[startEnd[j-1]] + pos[startEnd[j]-1])/2)
.toArray();
}
private static IndexArray[] hapToSeq(RefGT restrictRef, GT phasedTarg,
int[] targStartEnd) {
HaplotypeCoder coder = new HaplotypeCoder(restrictRef, phasedTarg);
return IntStream.range(1, targStartEnd.length)
.mapToObj(j -> coder.run(targStartEnd[j-1], targStartEnd[j]))
.toArray(IndexArray[]::new);
}
private static float[] err(float errRate, int[] startEnd) {
float maxErrProb = 0.5f;
float[] err = new float[startEnd.length - 1];
for (int j=0; j<err.length; ++j) {
err[j] = errRate * (startEnd[j+1] - startEnd[j]);
if (err[j] > maxErrProb) {
err[j] = maxErrProb;
}
}
return err;
}
private static int[] refClustStart(int[] clustStartEnd, int[] targToRef) {
return IntStream.range(0, clustStartEnd.length-1)
.map(j -> targToRef[clustStartEnd[j]])
.toArray();
}
private static int[] refClustEnd(int[] clustStartEnd, int[] targToRef) {
return IntStream.range(1, clustStartEnd.length)
.map(j -> targToRef[clustStartEnd[j] - 1] + 1)
.toArray();
}
private static float[] pRecomb(float ne, int nHaps, double[] pos) {
float[] pRecomb = new float[pos.length];
double c = -(0.04*ne/nHaps); // 0.04 = 4/(100 cM/M)
for (int j=1; j<pRecomb.length; ++j) {
pRecomb[j] = (float) -Math.expm1(c*(pos[j] - pos[j-1]));
}
return pRecomb;
}
private static float[] wts(Markers refMarkers, int[] refClusterStart,
int[] refClusterEnd, GeneticMap map) {
double[] cumPos = cumPos(refMarkers, map);
int nTargMarkersM1 = refClusterStart.length - 1;
float[] wts = new float[cumPos.length];
Arrays.fill(wts, 0, refClusterStart[0], Float.NaN);
for (int j=0; j<nTargMarkersM1; ++j) {
int start = refClusterStart[j];
int end = refClusterEnd[j];
int nextStart = refClusterStart[j+1];
double nextStartPos = cumPos[nextStart];
double totalLength = nextStartPos - cumPos[end - 1];
Arrays.fill(wts, start, end, Float.NaN);
for (int m=end; m<nextStart; ++m) {
wts[m] = (float) ((cumPos[nextStart] - cumPos[m]) / totalLength);
}
}
Arrays.fill(wts, refClusterStart[nTargMarkersM1], refMarkers.size(),
Float.NaN);
return wts;
}
/**
* Returns the command line parameters
* @return the command line parameters
*/
public Par par() {
return par;
}
public MarkerIndices markerIndices() {
return markerIndices;
}
/**
* Return the reference genotype data
* @return the reference genotype data
*/
public RefGT refGT() {
return refGT;
}
/**
* Return the phased target genotype data. The {@code isPhased()} method
* of the returned object returns {@code true}.
* @return the phased target genotype data
*/
public GT targGT() {
return phasedTarg;
}
/**
* Returns the target marker index corresponding to the start (inclusive)
* of the specified marker cluster.
* @param cluster index of a target marker cluster
* @return the target marker index corresponding to the start (inclusive)
* of the specified marker cluster
* @throws IndexOutOfBoundsException if
* {@code cluster < 0 || cluster >= this.nClusters()}
*/
public int targClusterStart(int cluster) {
if (cluster >= nClusters) {
throw new IndexOutOfBoundsException(String.valueOf(cluster));
}
return targClustStartEnd[cluster];
}
/**
* Returns the target marker index corresponding to the end (exclusive) of
* the specified marker cluster.
* @param cluster index of a target marker cluster
* @return the target marker index corresponding to the end (exclusive)
* of the specified marker cluster
* @throws IndexOutOfBoundsException if
* {@code cluster < 0 || cluster >= this.nClusters()}
*/
public int targClusterEnd(int cluster) {
if (cluster < 0) {
throw new IndexOutOfBoundsException(String.valueOf(cluster));
}
return targClustStartEnd[cluster + 1];
}
/**
* Returns the index of the reference marker corresponding to the start
* (inclusive) of the specified target marker cluster.
* @param cluster index of a target marker cluster
* @return the index of the reference marker corresponding to the start
* (inclusive) of the specified target marker cluster
* @throws IndexOutOfBoundsException if
* {@code cluster < 0 || cluster >= this.nClusters()}
*/
public int refClusterStart(int cluster) {
return refClusterStart[cluster];
}
/**
* Returns the index of the reference marker corresponding to the end
* (exclusive) of the specified target marker cluster.
* @param cluster index of a target marker cluster
* @return the index of the reference marker corresponding to the end
* (exclusive) of the specified target marker cluster
* @throws IndexOutOfBoundsException if
* {@code cluster < 0 || cluster >= this.nClusters()}
*/
public int refClusterEnd(int cluster) {
return refClusterEnd[cluster];
}
/**
* Return the number of target marker clusters.
* @return the number of target marker clusters
*/
public int nClusters() {
return nClusters;
}
/**
* Returns the list of target samples.
* @return the list of target samples
*/
public Samples targSamples() {
return phasedTarg.samples();
}
/**
* Returns the number of target samples.
* @return the number of target samples
*/
public int nTargSamples() {
return phasedTarg.nSamples();
}
/**
* Return the total number of reference and target haplotypes.
* @return the total number of reference and target haplotypes
*/
public int nHaps() {
return nHaps;
}
/**
* Return the number of reference haplotypes.
* @return the number of reference haplotypes
*/
public int nRefHaps() {
return nRefHaps;
}
/**
* Return the number of target haplotypes.
* @return the number of target haplotypes
*/
public int nTargHaps() {
return nTargHaps;
}
/**
* Return the number of input target haplotypes. Each sample with
* haploid input data contributes only one haplotype to the total.
* @return the number of input target haplotypes
*/
public int nInputTargHaps() {
return nInputTargHaps;
}
/**
* Returns the specified target marker cluter alleles for the
* reference and target haplotypes. Alleles for the
* reference haplotypes precede alleles for the target haplotypes. If
* {@code (this.nRefHaps() <= hap && hap < this.nHaps())} then
* {@code (this.allele(marker, hap) ==
* this.targAllele(marker, hap - this.nRefHaps())}
* @param cluster index of a target marker cluster
* @param hap a haplotype index
* @return the specified target marker cluster allele for the specified
* haplotype
* @throws IndexOutOfBoundsException if
* {@code cluster < 0 || cluster >= this.nClusters()}
* @throws IndexOutOfBoundsException if
* {@code haplotype < 0 || haplotype >= this.nHaps()}
*/
public int allele(int cluster, int hap) {
return hapToSeq[cluster].get(hap);
}
/**
* Returns the specified target marker cluster alleles for the
* reference and target haplotypes. Alleles for the
* reference haplotypes precede alleles for the target haplotypes. The
* returned value will satisfy
* {@code (this.hapToSeq(cluster).get(hap)==this.allele(cluster, hap))}
* for any {@code cluster} and {@code hap} satisfying
* {@code (0 <= cluster && cluster < this.nClusters())} and
* {@code (0 <= hap && hap < this.nHaps())}
* @param cluster index of a target marker cluster
* @return the specified target marker cluster alleles for the
* reference and target haplotypes
* @throws IndexOutOfBoundsException if
* {@code cluster < 0 || cluster >= this.nClusters()}
*/
public IndexArray hapToSeq(int cluster) {
return hapToSeq[cluster];
}
/**
* Returns the probability that the allele carried by the specified
* target marker cluster matches the allele labeling the latent HMM state.
* @param cluster index of a target marker cluster
* @return the probability that the allele carried by the specified
* target marker cluster matches the allele labeling the latent HMM state.
* @throws IndexOutOfBoundsException if
* {@code cluster < 0 || cluster >= this.nClusters()}
*/
public float errProb(int cluster) {
return errProb[cluster];
}
/**
* Return the genetic map position of the specified target marker cluster.
* @param cluster index of a target marker cluster
* @return the genetic map position of the specified target marker cluster
* @throws IllegalArgumentException if
* {@code cluster < 0 || marker >= this.nClusters()}
*/
public double pos(int cluster) {
return pos[cluster];
}
/**
* Return an array of size {@code this.nClusters()} containing the
* the genetic map positions of the target marker clusters.
* @return the genetic map positions of the target marker clusters
*/
public double[] pos() {
return pos.clone();
}
/**
* Return the probability of recombination between the specified
* target marker cluster and the previous target marker cluster.
* Returns {@code 0} if {@code (cluster == 0)}.
* @param cluster index of a target marker cluster
* @return the probability of recombination between the specified
* target marker cluster and the previous target marker cluster
* @throws IllegalArgumentException if
* {@code cluster < 0 || cluster >= this.nClusters()}
*/
public float pRecomb(int cluster) {
return pRecomb[cluster];
}
/**
* Return the weight for the HMM state probability at the
* preceding target marker cluster when estimating the HMM state
* probability at the specified reference marker via linear interpolation
* of HMM state probabilities at the preceding and succeeding target
* marker clusters.
*
* @param refMarker a reference marker index
* @return the weight for the HMM state probability at the preceding
* target marker cluster when estimating the HMM state
* probability at the specified reference marker via linear interpolation
* @throws IllegalArgumentException if
* {@code refMarker < 0 || refMarker >= this.refGT().nMarkers()}
*/
public double weight(int refMarker) {
return weight[refMarker];
}
}
|