1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
/*
* Copyright (C) 2014-2021 Brian L. Browning
*
* This file is part of Beagle
*
* Beagle is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Beagle is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package main;
import blbutil.Const;
import blbutil.Utilities;
import imp.ImpData;
import imp.ImpLS;
import imp.StateProbs;
import java.io.File;
import java.util.Locale;
import java.util.Optional;
import java.util.Random;
import java.util.concurrent.atomic.AtomicReferenceArray;
import phase.FixedPhaseData;
import phase.PhaseData;
import phase.PhaseLS;
import phase.Stage2Haps;
import phase.SwapRate;
import vcf.BasicGT;
import vcf.GT;
import vcf.MarkerIndices;
import vcf.RefTargSlidingWindow;
import vcf.SlidingWindow;
import vcf.TargSlidingWindow;
import vcf.Window;
import vcf.XRefGT;
/**
* Class {@code Main} is the entry class for the Beagle program. See
* {@code Par.usage()} and online program documentation for usage instructions.
*
* @author Brian L. Browning {@code <browning@uw.edu>}
*/
public class Main {
/**
* The program name and version.
*/
private static final String VERSION = "(version 5.5)";
/**
* The program name and commit version.
*/
public static final String PROGRAM = "beagle.17Dec24.224.jar";
/**
* The command to invoke the program.
*/
public static final String COMMAND = "java -jar beagle.17Dec24.224.jar";
/**
* The copyright string.
*/
public static final String COPYRIGHT = "Copyright (C) 2014-2024 Brian L. Browning";
/**
* The program name and a brief help message.
*/
public static final String SHORT_HELP = Main.PROGRAM + " " + VERSION
+ Const.nl + Main.COPYRIGHT
+ Const.nl + "Enter \"" + COMMAND
+ "\" to list command line argument";
private final Par par;
private final SlidingWindow slidingWind;
private final RunStats runStats;
private final WindowWriter windowWriter;
private final Random rand; // generates distinct seed for each window
/**
* Entry point to Beagle program. See {@code Parameters.usage()} and program
* documentation description of valid arguments.
*
* @param args command line arguments
*/
public static void main(String[] args) {
Locale.setDefault(Locale.US);
if (args.length == 0) {
System.out.println(PROGRAM + " " + VERSION);
System.out.println(COPYRIGHT);
System.out.println(Par.usage());
System.exit(0);
}
Par par = parameters(args);
System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism",
String.valueOf(par.nthreads()));
RunStats runStats = new RunStats(par);
runStats.printStartInfo();
try (SlidingWindow slidingWind = slidingWindow(par);
WindowWriter winOut = new WindowWriter(par, slidingWind.targSamples())) {
Main main = new Main(par, slidingWind, winOut, runStats);
main.phaseAndImpute();
runStats.printSummaryAndClose(slidingWind.cumTargMarkers(),
slidingWind.cumMarkers());
}
}
private Main(Par par, SlidingWindow slidingWindow, WindowWriter windWriter,
RunStats runStats) {
this.par = par;
this.slidingWind = slidingWindow;
this.runStats = runStats;
this.windowWriter = windWriter;
this.rand = new Random(par.seed());
}
private static SlidingWindow slidingWindow(Par par) {
if (par.ref() == null) {
return TargSlidingWindow.instance(par);
} else {
return RefTargSlidingWindow.instance(par);
}
}
private void phaseAndImpute() {
Optional<Window> optWindow = slidingWind.nextWindow();
printSampleSummary(optWindow);
GT overlap = null;
while (optWindow.isPresent()) {
Window window = optWindow.get();
FixedPhaseData fpd = new FixedPhaseData(par, slidingWind.ped(),
window, overlap);
runStats.printWindowUpdate(window, fpd);
PhaseData pd = new PhaseData(fpd, rand.nextLong());
if (fpd.targGT().isPhased()) {
XRefGT phasedTarg = XRefGT.fromPhasedGT(fpd.targGT(), par.nthreads());
overlap = printWindow(window, phasedTarg);
}
else {
phaseStage1Variants(pd);
if (fpd.stage1TargGT().nMarkers()==fpd.targGT().nMarkers()) {
XRefGT phasedTarg = pd.estPhase().phasedHaps();
overlap = printWindow(window, phasedTarg);
}
else {
Stage2Haps stage2Haps = phaseStage2Variants(pd);
overlap = printWindow(window, stage2Haps);
}
}
optWindow = slidingWind.nextWindow();
}
slidingWind.close();
}
private void printSampleSummary(Optional<Window> optWindow) {
if (optWindow.isPresent()) {
runStats.printSampleSummary(slidingWind.ped(), optWindow.get());
}
}
private void phaseStage1Variants(PhaseData pd) {
int nIts = par.burnin() + par.iterations();
double maxBurninSwapRate = 0.01;
while (pd.it()<nIts) {
long t0 = System.nanoTime();
PhaseLS.runStage1(pd);
runStats.printStage1Info(pd, (System.nanoTime() - t0));
pd.incrementIt();
double swapRate = SwapRate.getAndResetSwapRate();
if (pd.it()<par.burnin() && swapRate<=maxBurninSwapRate) {
pd.advanceToFirstPhasingIt();
}
}
}
private Stage2Haps phaseStage2Variants(PhaseData pd) {
long t0 = System.nanoTime();
Stage2Haps stage2Haps = PhaseLS.runStage2(pd);
runStats.printStage2Info(System.nanoTime() - t0);
return stage2Haps;
}
private XRefGT printWindow(Window window, XRefGT phasedTarg) {
boolean impute = window.indices().nMarkers() != window.indices().nTargMarkers();
if (impute==false) {
int mStart = window.indices().prevTargSplice();
int mEnd = window.indices().nextTargSplice();
windowWriter.printPhased(phasedTarg, mStart, mEnd);
return phasedOverlap(window, phasedTarg);
}
else {
long t0 = System.nanoTime();
ImpData impData = new ImpData(par, window, phasedTarg, window.genMap());
AtomicReferenceArray<StateProbs> stateProbs = ImpLS.stateProbs(impData);
int mStart = window.indices().prevSplice();
int mEnd = window.indices().nextSplice();
windowWriter.printImputed(impData, mStart, mEnd, stateProbs);
runStats.imputationNanos(System.nanoTime() - t0);
runStats.printImputationUpdate();
return phasedOverlap(window, phasedTarg);
}
}
private GT printWindow(Window window, Stage2Haps stage2Haps) {
boolean impute = window.indices().nMarkers() != window.indices().nTargMarkers();
if (impute==false) {
int mStart = window.indices().prevTargSplice();
int mEnd = window.indices().nextTargSplice();
windowWriter.printPhased(stage2Haps, mStart, mEnd);
return stage2Haps.toBasicGT(window.indices().targOverlapStart(), mEnd);
} else {
long t0 = System.nanoTime();
BasicGT phasedHapMajor = stage2Haps.toBasicGT(0, window.targGT().nMarkers());
XRefGT phasedTarg = XRefGT.fromPhasedGT(phasedHapMajor, par.nthreads());
ImpData impData = new ImpData(par, window, phasedTarg, window.genMap());
AtomicReferenceArray<StateProbs> stateProbs = ImpLS.stateProbs(impData);
int mStart = window.indices().prevSplice();
int mEnd = window.indices().nextSplice();
windowWriter.printImputed(impData, mStart, mEnd, stateProbs);
runStats.imputationNanos(System.nanoTime() - t0);
runStats.printImputationUpdate();
return phasedOverlap(window, phasedTarg);
}
}
private XRefGT phasedOverlap(Window window, XRefGT phasedTarg) {
assert phasedTarg.isPhased();
MarkerIndices markerIndices = window.indices();
int nextOverlap = markerIndices.targOverlapStart();
int nextSplice = markerIndices.nextTargSplice();
int nMarkers = nextSplice - nextOverlap;
return nMarkers==0 ? null : phasedTarg.restrict(nextOverlap, nextSplice);
}
/*
* Checks that certain parameters are consistent, and prints error
* message and exits if parameters are inconsistent.
*
* @param args the command line arguments.
*/
private static Par parameters(String[] args) {
// warnings are printed in RunStats.startInfo() method
Par par = new Par(args);
checkOutputPrefix(par);
if (par.window() < 1.1 * par.overlap()) {
String s = SHORT_HELP + Const.nl
+ Const.nl + "ERROR: The \"window\" parameter must be at least "
+ "1.1 times the \"overlap\" parameter"
+ Const.nl + "Exiting program.";
Utilities.exit(s);
}
return par;
}
private static void checkOutputPrefix(Par par) {
File outPrefix = new File(par.out());
if (outPrefix.isDirectory()) {
String s = "ERROR: \"out\" parameter cannot be a directory: \""
+ par.out() + "\"";
Utilities.exit(Par.usage() + s);
}
File vcfOut = new File(par.out() + ".vcf.gz");
if (vcfOut.equals(par.ref())) {
String s = "ERROR: VCF output file equals input file: " + par.ref();
Utilities.exit(Par.usage() + s);
}
if (vcfOut.equals(par.gt())) {
String s = "ERROR: VCF output file equals input file: " + par.gt();
Utilities.exit(Par.usage() + s);
}
}
}
|