File: ParamEstimates.java

package info (click to toggle)
beagle 250227-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,364 kB
  • sloc: java: 17,684; sh: 55; makefile: 11
file content (158 lines) | stat: -rw-r--r-- 5,818 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
 * Copyright (C) 2014-2021 Brian L. Browning
 *
 * This file is part of Beagle
 *
 * Beagle is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Beagle is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
package phase;

import java.util.concurrent.ConcurrentLinkedQueue;

/**
 * <p>Class {@code ParamEstimates} estimates the allele mismatch probability
 * and the recombination intensity for a haploid Li and Stephens hidden
 * Markov model.</p>
 *
 * <p>Instances of class {@code ParamEstimates} are thread-safe.</p>
 *
 * @author Brian L. Browning {@code <browning@uw.edu>}
 */
public class ParamEstimates {

    private final ConcurrentLinkedQueue<RecombData> switchData;
    private final ConcurrentLinkedQueue<MismatchData> mismatchData;

    /**
     * Constructs a new {@code ParamEstimates} instance for the specified
     * data.
     */
    public ParamEstimates() {
        this.switchData = new ConcurrentLinkedQueue<>();
        this.mismatchData = new ConcurrentLinkedQueue<>();
    }

    /**
     * Records the specified allele mismatch data if {@code markerCnt} and
     * {@code pMismatchSum} are finite positive values.
     * @param markerCnt the number of markers with mismatch data
     * @param pMismatchSum the sum of estimated allele mismatch probabilities
     */
    public void addMismatchData(int markerCnt, double pMismatchSum) {
        if (markerCnt>0 && pMismatchSum>0 && Double.isFinite(pMismatchSum)) {
            mismatchData.add(new MismatchData(markerCnt, pMismatchSum));
        }
    }

    /**
     * Records the specified genetic distance and switch probability
     * if {@code genDistances} and {@code switchProbs} are finite positive
     * values.
     * @param genDistances the list of genetic distance
     * @param switchProbs the list of haplotype switch probabilities
     */
    public void addSwitchData(double genDistances, double switchProbs) {
        if (genDistances>0 && switchProbs>0
                && Double.isFinite(genDistances) && Double.isFinite(switchProbs)) {
            switchData.add(new RecombData(genDistances, switchProbs));
        }
    }

    /**
     * Returns the estimated allele mismatch rate. Returns {@code Float.NaN}
     * if there is no data to estimate the allele mismatch rate.  The returned
     * value is not an atomic snapshot. Invocation in the absence of concurrent
     * update will return an accurate result, but concurrent updates that
     * occur white the sum is being calculated might not be incorporated
     * in the returned result.
     * @return the estimated allele mismatch rate
     */
    public float pMismatch() {
        MismatchData[] mda = mismatchData.stream()
                .sorted() // ensures sum of values is repeatable
                .toArray(MismatchData[]::new);
        long sumMarkers = 0;
        double sumPMismatch = 0d;
        for (MismatchData md : mda) {
            sumMarkers += md.markerCnt;
            sumPMismatch += md.pMismatchSum;
        }
        return sumMarkers==0 ? Float.NaN : (float) (sumPMismatch/sumMarkers);
    }

    /**
     * Returns the estimated recombination intensities. Returns {@code Float.NaN}
     * if there is no data from which to estimate recombination intensities.
     * The returned value is NOT an atomic snapshot. An accurate result is
     * guaranteed only if no concurrent updates occur during method
     * invocation.
     * @return the estimated recombination intensities
     */
    public float recombIntensity() {
        RecombData[] rda = switchData.stream()
                .sorted() // ensures sum of values is repeatable
                .toArray(RecombData[]::new);
        double sumSwitches = 0d;
        double sumDistances = 0d;
        for (RecombData rd : rda) {
            sumSwitches += rd.switchProb;
            sumDistances += rd.genDistance;
        }
        return sumDistances==0d ? Float.NaN : (float) (sumSwitches/sumDistances);
    }

    /**
     * Clears all data that has been added via the
     * {@code this.addMismatchData} and {@code this.addSwitchData()}
     * methods.
     */
    public void clear() {
        switchData.clear();
        mismatchData.clear();
    }

    private static class RecombData implements Comparable<RecombData> {

        private final double genDistance;
        private final double switchProb;

        public RecombData(double genDistance, double switchProb) {
            this.genDistance = genDistance;
            this.switchProb = switchProb;
        }

        @Override
        public int compareTo(RecombData o) {
            int val = Double.compare(this.genDistance, o.genDistance);
            return val!=0 ? val : Double.compare(this.switchProb, o.switchProb);
        }
    }

    private static class MismatchData implements Comparable<MismatchData> {

        private final int markerCnt;
        private final double pMismatchSum;

        public MismatchData(int markerCnt, double pMismatchSum) {
            this.markerCnt = markerCnt;
            this.pMismatchSum = pMismatchSum;
        }

        @Override
        public int compareTo(MismatchData o) {
            int val = Double.compare(this.pMismatchSum, o.pMismatchSum);
            return val!=0 ? val : Integer.compare(this.markerCnt, o.markerCnt);
        }
    }
}