1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*
* Copyright (C) 2014-2021 Brian L. Browning
*
* This file is part of Beagle
*
* Beagle is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Beagle is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package phase;
import main.Par;
/**
* <p>Class {@code PbwtIbsData} contains parameters and data for finding
* haplotypes that share an IBS segment with a target haplotype.</p>
*
* @author Brian L. Browning {@code <browning@uw.edu>}
*/
public class PbwtIbsData {
private static final int BURNIN_CANDIDATES = 100;
private static final int MAX_PHASE_CANDIDATES = 90;
private static final int MIN_PHASE_CANDIDATES = 5;
private static final int STAGE2_CANDIDATES = 10;
private static final float MAX_BACKOFF_CM = 0.3f;
private final CodedSteps codedSteps;
private final int nHaps;
private final int nTargHaps;
private final int nCandidates;
private final int nSteps;
private final int nOverlapSteps;
private final int maxBackoffSteps;
private final int stepsPerBatch;
private final int nBatches;
/**
* Constructs a new {@code PbwtIbsData} instance from the specified data.
* @param phaseData the current genotype phase estimates and parameter
* values
* @param codedSteps the coded steps
* @throws IllegalArgumentException if
* {@code phaseData.fpd().stage1Steps() != codedSteps.steps()}
* @throws IllegalArgumentException if
* {@code phaseData.fpd().stage1XRefGT()!=codedSteps.refHaps()}
* @throws IllegalArgumentException if
* {@code phaseData.fpd().targGT().samples()!=codedSteps.targSamples()}
* @throws NullPointerException if
* {@code phaseData == null || codedSteps == null}
*/
public PbwtIbsData(PhaseData phaseData, CodedSteps codedSteps) {
checkConsistency(phaseData, codedSteps);
FixedPhaseData fpd = phaseData.fpd();
Par par = fpd.par();
int nThreads = par.nthreads();
int nIts = par.burnin() + par.iterations();
this.codedSteps = codedSteps;
this.nHaps = fpd.nHaps();
this.nTargHaps = phaseData.fpd().targGT().nHaps();
this.nCandidates = phaseData.it()<nIts
? nCandidates1(phaseData)
: Math.min(STAGE2_CANDIDATES, phaseData.fpd().nHaps());
this.nSteps = codedSteps.steps().size();
this.nOverlapSteps = (int) Math.rint(par.buffer() / fpd.ibsStep());
this.maxBackoffSteps = (int) Math.rint(MAX_BACKOFF_CM / fpd.ibsStep());
this.stepsPerBatch = (nSteps + nThreads - 1) / nThreads;
this.nBatches = (nSteps + stepsPerBatch - 1) / stepsPerBatch;
}
private static void checkConsistency(PhaseData phaseData,
CodedSteps codedSteps) {
FixedPhaseData fpd = phaseData.fpd();
if (fpd.stage1Steps()!=codedSteps.steps()
|| fpd.stage1XRefGT()!=codedSteps.refHaps()
|| fpd.targGT().samples()!=codedSteps.targSamples()) {
throw new IllegalArgumentException("inconsistent data");
}
}
private static int nCandidates1(PhaseData phaseData) {
int nCandidates = BURNIN_CANDIDATES;
int it = phaseData.it();
Par par = phaseData.fpd().par();
if (it>=par.burnin()) {
double nItsRemaining = par.burnin() + par.iterations() - it;
double p = (double) nItsRemaining / par.iterations();
nCandidates = (int) Math.round(p*MAX_PHASE_CANDIDATES);
nCandidates = Math.max(nCandidates, MIN_PHASE_CANDIDATES);
}
return Math.min(nCandidates, phaseData.fpd().nHaps());
}
/**
* Returns the coded steps.
* @return the codedSteps
*/
public CodedSteps codedSteps() {
return codedSteps;
}
/**
* Returns the total number of target and reference haplotypes.
* @return the total number of target and reference haplotypes
*/
public int nHaps() {
return nHaps;
}
/**
* Returns the number of target haplotypes.
* @return the number of target haplotypes
*/
public int nTargHaps() {
return nTargHaps;
}
/**
* Returns the number of candidate haplotypes
* @return the number of candidate haploytpes
*/
public int nCandidates() {
return nCandidates;
}
/**
* Returns the number of steps.
* @return the number of steps
*/
public int nSteps() {
return nSteps;
}
/**
* Returns the number of overlap steps
* @return the number of overlap steps
*/
public int nOverlapSteps() {
return nOverlapSteps;
}
/**
* Returns the number of backoff steps
* @return the number of backoff steps
*/
public int maxBackoffSteps() {
return maxBackoffSteps;
}
/**
* Returns the number of steps per batch
* @return the number of steps per batch
*/
public int stepsPerBatch() {
return stepsPerBatch;
}
/**
* Returns the number of batches.
* @return the number of batches
*/
public int nBatches() {
return nBatches;
}
/**
* Returns the start step (inclusive) for the specified batch:
* {@code (batch * this.stepsPerbatch())}.
* @param batch a batch index
* @throws IndexOutOfBoundsException if
* {@code (batch < 0 || batch >= this.nBatches()) }
* @return the start step (inclusive) for the specified batch
*/
public int startStep(int batch) {
if (batch < 0 || batch >= nBatches) {
throw new IndexOutOfBoundsException(String.valueOf(batch));
}
return batch*stepsPerBatch;
}
/**
* Returns the end step (exclusive) for the specified batch:
* {@code Math.min((batch+1)*this.stepsPerBatch(), this.nSteps())}.
* @param batch a batch index
* @throws IndexOutOfBoundsException if
* {@code (batch < 0 || batch >= this.nBatches()) }
* @return the end step (exclusive) for the specified batch
*/
public int endStep(int batch) {
if (batch < 0 || batch >= nBatches) {
throw new IndexOutOfBoundsException(String.valueOf(batch));
}
return Math.min((batch+1)*stepsPerBatch, nSteps);
}
/**
* Returns the start step (inclusive) of the start buffer segment:
* {@code Math.max((0, startStep - this.nOverlapSteps())}.
* @param startStep the start step (inclusive) of a segment
* @throws IndexOutOfBoundsException if
* {@code (startStep < 0 || startStep >= this.nSteps()) }
* @return the start step (inclusive) of the start buffer segment
*/
public int bufferStartStep(int startStep) {
if (startStep < 0 || startStep >= nSteps) {
throw new IndexOutOfBoundsException(String.valueOf(startStep));
}
return Math.max(0, startStep - nOverlapSteps);
}
/**
* Returns the end step (exclusive) of the end buffer segment:
* {@code Math.min((endStep + this.nOverlapSteps(), this.nSteps())}.
* @param endStep the end step (exclusive) of a segment
* @throws IndexOutOfBoundsException if
* {@code (endStep <= 0 || endStep > this.nSteps()) }
* @return the end step (exclusive) of the end buffer segment
*/
public int bufferEndStep(int endStep) {
if (endStep <= 0 || endStep > nSteps) {
throw new IndexOutOfBoundsException(String.valueOf(endStep));
}
return Math.min(endStep + nOverlapSteps, nSteps);
}
}
|