1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/*
* Copyright (C) 2014-2021 Brian L. Browning
*
* This file is part of Beagle
*
* Beagle is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Beagle is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package phase;
import blbutil.DoubleArray;
import blbutil.Utilities;
import ints.IntList;
import ints.WrappedIntArray;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicReferenceArray;
import java.util.stream.IntStream;
import vcf.GT;
/**
* <p>Class {@code PbwtPhaser} phases input genotype data and imputes
* missing alleles using the Positional Burrows-Wheeler Transform (PBWT)</p>
*
* <p>Instances of class {@code PbwtPhaser} are not thread-safe.</p>
*
* <p>Reference: Richard Durbin. (2014) Efficient haplotype matching and storage
* using the Positional Burrows-Wheeler Transform (PBWT). Bioinformatics
* 30(9):1266-72.</p>
*
* <p>Reference: Olivier Delaneau, Jean-Francois Zagury, Matthew R Robinson,
* Jonathan Marchini, Emmanouil Dermitzakis. (2019) Accurate, scalable and
* integrative haplotype estimation. Nature Communications 10(1):5436.</p>
*
* @author Brian L. Browning {@code <browning@uw.edu>}
*/
public class PbwtPhaser {
private final int start;
private final int end;
private final FwdPbwtPhaser fwdPbwt;
private PbwtPhaser(FixedPhaseData fpd, int start, int end, long seed) {
if (start<0 || end>fpd.targGT().nMarkers() || start>=end) {
throw new IllegalArgumentException(String.valueOf(start));
}
this.start = start;
this.end = end;
this.fwdPbwt = new FwdPbwtPhaser(fpd, start, end, seed);
}
/**
* Returns an initial phasing for first-stage markers in the target samples.
* @param fpd the input data for phasing
* @param seed seed for random number generation
* @return an initial genotype phasing for the first-stage markers in the
* target samples
* @throws NullPointerException if {@code fpd == null}
*/
public static AtomicReferenceArray<SamplePhase> initPhase(FixedPhaseData fpd,
long seed) {
PbwtPhaser[] ppa = pbwtPhasers(fpd, seed);
int nSamples = fpd.stage1TargGT().nSamples();
int nThreads = fpd.par().nthreads();
int maxStepSize = 128;
int stepSize = Math.min((nSamples + nThreads - 1)/nThreads, maxStepSize);
int nSteps = (nSamples + (stepSize-1)) / stepSize;
AtomicReferenceArray<SamplePhase> phase = new AtomicReferenceArray<>(nSamples);
IntStream.range(0, nSteps)
.parallel()
.boxed()
.forEach(step -> setSamplePhase(fpd, ppa, phase, step, stepSize));
return phase;
}
private static void setSamplePhase(FixedPhaseData fpd, PbwtPhaser[] ppa,
AtomicReferenceArray<SamplePhase> phase, int step, int stepSize) {
GT gt = fpd.stage1TargGT();
int sStart = step*stepSize;
int sEnd = Math.min(sStart + stepSize, gt.nSamples());
Indices[] indices = indices(fpd, sStart, sEnd);
int overlapEnd = 0;
int[][] haps = new int[(sEnd-sStart)<<1][gt.nMarkers()];
ppa[0].copyHaps(haps, indices, overlapEnd, sStart, sEnd);
for (int j=1; j<ppa.length; ++j) {
overlapEnd = ppa[j-1].end;
ppa[j].copyHaps(haps, indices, overlapEnd, sStart, sEnd);
}
for (int s=sStart; s<sEnd; ++s) {
int ss = s - sStart;
int hh1 = ss<<1;
int hh2 = hh1 | 0b1;
phase.set(s, new SamplePhase(s, gt.markers(), fpd.stage1Map().genPos(),
haps[hh1], haps[hh2], indices[ss].hetIndices, indices[ss].missIndices));
}
}
private void copyHaps(int[][] haps, Indices[] indices, int overlapEnd,
int sStart, int sEnd) {
int copyStart = (this.start + overlapEnd)>>>1;
int[][] alignedHaps = haps.clone();
if (this.start>0) {
for (int s=sStart; s<sEnd; ++s) {
int ss = s - sStart;
int hh1 = ss<<1;
int hh2 = hh1 | 0b1;
int alignHet = alignmentHet(indices[ss].hetIndices,
start, copyStart, overlapEnd);
if (alignHet>=0 && switchHapLabels(s, haps[hh1], haps[hh2], alignHet)) {
alignedHaps[hh1] = haps[hh2];
alignedHaps[hh2] = haps[hh1];
}
}
}
for (int m=copyStart; m<end; ++m) {
for (int s=sStart; s<sEnd; ++s) {
int h1 = s<<1;
int h2 = h1 | 0b1;
int hh1 = (s - sStart)<<1;
int hh2 = hh1 | 0b1;
alignedHaps[hh1][m] = fwdPbwt.allele(m, h1);
alignedHaps[hh2][m] = fwdPbwt.allele(m, h2);
}
}
}
/* Returns -1 if no alignment het exists */
private static int alignmentHet(WrappedIntArray hetList, int start,
int copyStart, int overlapEnd) {
if (hetList.size()==0) {
return -1;
}
int index = insPt(hetList, copyStart);
if (index==hetList.size() || (hetList.get(index)>=overlapEnd && index>0)) {
index -= 1;
}
int het = hetList.get(index);
return (start<=het && het<overlapEnd) ? het : -1;
}
private boolean switchHapLabels(int sample, int[] hap1, int[] hap2, int alignHet) {
int h1 = sample<<1;
int h2 = h1 | 0b1;
int a1 = hap1[alignHet];
int a2 = hap2[alignHet];
int b1 = fwdPbwt.allele(alignHet, h1);
int b2 = fwdPbwt.allele(alignHet, h2);
return a1==b2 && a2==b1;
}
private static int insPt(WrappedIntArray list, int value) {
int index = list.binarySearch(value);
return (index<0) ? -index-1 : index;
}
private static PbwtPhaser[] pbwtPhasers(FixedPhaseData fpd, long seed) {
int[][] windows = hiFreqWindows(fpd);
return IntStream.range(0, windows.length)
.parallel()
.mapToObj(j -> new PbwtPhaser(fpd, windows[j][0], windows[j][1],
seed + j))
.toArray(PbwtPhaser[]::new);
}
private static int[][] hiFreqWindows(FixedPhaseData fpd) {
DoubleArray genPos = fpd.stage1Map().genPos();
int nMarkers = genPos.size();
int nThreads = fpd.par().nthreads();
double totalCM = genPos.get(genPos.size()-1) - genPos.get(0);
double overlapCM = 0.5;
double advanceCM = Math.max(4*overlapCM, (totalCM/nThreads));
List<int[]> windowList = new ArrayList<>(nThreads);
int from = 0;
int to = to(genPos, genPos.get(from) + advanceCM);
while (to<nMarkers) {
windowList.add(new int[] {from, to});
from = from(genPos, genPos.get(to) - overlapCM);
to = to(genPos, genPos.get(to) + advanceCM);
}
assert to==nMarkers;
windowList.add(new int[] {from, to});
return windowList.toArray(new int[0][]);
}
private static int from(DoubleArray genPos, double pos) {
int insPt = genPos.binarySearch(pos);
return insPt<0 ? -insPt-1 : insPt;
}
private static int to(DoubleArray genPos, double pos) {
int insPt = genPos.binarySearch(pos);
return insPt<0 ? -insPt-1 : (insPt+1); //insPt>=0 implies insPt<genpPos.size()
}
private static Indices[] indices(FixedPhaseData fpd, int sStart, int sEnd) {
GT gt = fpd.stage1TargGT();
int overlap = fpd.stage1Overlap();
int nMarkers = gt.nMarkers();
int len = sEnd - sStart;
IntList[] missIndices = intLists(len);
IntList[] hetIndices = intLists(len);
boolean[] notFirstHet = new boolean[len];
for (int m=0; m<nMarkers; ++m) {
for (int s=sStart; s<sEnd; ++s) {
int ss = s-sStart;
int hap1 = s << 1;
int a1 = gt.allele(m, hap1);
int a2 = gt.allele(m, hap1 | 0b1);
if (a1<0 || a2<0) {
missIndices[ss].add(m);
}
else if (a1!=a2) {
if (m>=overlap && notFirstHet[ss]) {
hetIndices[ss].add(m);
}
else {
notFirstHet[ss] = true;
}
}
}
}
return IntStream.range(0, len)
.mapToObj(j -> new Indices(missIndices[j], hetIndices[j]))
.toArray(Indices[]::new);
}
private static IntList[] intLists(int length) {
return IntStream.range(0, length)
.parallel()
.mapToObj(j -> new IntList())
.toArray(IntList[]::new);
}
private static class Indices {
public final WrappedIntArray missIndices;
public final WrappedIntArray hetIndices;
public Indices(IntList missIndices, IntList hetIndices) {
this.missIndices = new WrappedIntArray(missIndices);
this.hetIndices = new WrappedIntArray(hetIndices);
}
}
}
|