1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
/*
* Copyright (C) 2014-2021 Brian L. Browning
*
* This file is part of Beagle
*
* Beagle is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Beagle is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package phase;
import beagleutil.PbwtUpdater;
import java.util.BitSet;
import java.util.Optional;
import java.util.stream.IntStream;
import vcf.GT;
import vcf.RefGT;
/**
* <p>Class {@code PbwtRecPhaser} partially phases and imputes genotypes
* using the Positional Burrows-Wheeler transform.</p>
*
* <p>Instances of class {@code PbwtRecPhaser} are not thread-safe.</p>
*
* <p>Reference: Richard Durbin. (2014) Efficient haplotype matching and storage
* using the Positional Burrows-Wheeler Transform (PBWT). Bioinformatics
* 30(9):1266-72.</p>
*
* <p>Reference: Olivier Delaneau, Jean-Francois Zagury, Matthew R Robinson,
* Jonathan Marchini, Emmanouil Dermitzakis. (2019) Accurate, scalable and
* integrative haplotype estimation. Nature Communications 10(1):5436.</p>
*
* @author Brian L. Browning {@code <browning@uw.edu>}
*/
public class PbwtRecPhaser {
private final GT targGT;
private final Optional<RefGT> optRef;
private final int phasedOverlap;
private final int nTargHaps;
private final int nTargSamples;
private final int nHaps;
private final int[] a;
private final int[] invA;
private final PbwtUpdater pbwt;
/**
* Creates a new {@code PbwtPhaser} for the specified data.
* @param fpd the input data for phasing
* @throws NullPointerException if {@code fpd == null}
*/
public PbwtRecPhaser(FixedPhaseData fpd) {
this.targGT = fpd.stage1TargGT();
this.optRef = fpd.stage1RefGT();
this.phasedOverlap = fpd.stage1Overlap();
this.nTargHaps = targGT.nHaps();
this.nTargSamples = targGT.nSamples();
this.nHaps = targGT.nHaps()
+ (optRef.isPresent() ? optRef.get().nHaps() : 0);
this.a = IntStream.range(0, nHaps).toArray();
this.invA = IntStream.range(0, nHaps).toArray();
this.pbwt = new PbwtUpdater(nHaps);
}
/**
* Returns the total number of target and reference haplotypes.
* @return the total number of target and reference haplotypes
*/
public int nHaps() {
return nHaps;
}
/**
* Returns the input target genotypes.
* @return the input target genotypes
*/
public GT targGT() {
return targGT;
}
/**
* Copies input target and reference alleles for the marker {@code nextMkr}
* to the {@code alleles} array and partially phases and imputes the alleles.
* When the method returns, the {@code alleles} array will contain the
* partially phased and imputed genotypes at {@code nextMkr}, the
* {@code true} elements of the {@code missing} array will identify
* target samples whose genotype at marker {@code nextMkr} is missing
* before partial phasing and imputation, and the {@code true} elements
* of the {@code unphHet} array will identify samples with a non-missing,
* unphased heteroygote genotype at marker {@code nextMkr} that remain
* unphased after partial phasing and imputation.
*
* @param currentMkr the marker index corresponding to the specified
* phased alleles or {@code -1} if the the alleles array does not contain
* phased alleles
* @param alleles phased alleles at marker {@code currentMkr} that
* will be overwritten with partially phased genotypes at marker
* {@code nextMkr}
* @param nextMkr the marker whose partially phased genotypes will be
* stored in the specified {@code alleles} array
* @param missing an array whose {@code true} elements identify samples
* with missing genotype at marker {@code nextMkr} before partial
* phasing and imputation
* @param unphHet an array whose {@code true} elements identify samples
* with non-missing, unphased heterozygote genotype at marker
* {@code nextMkr} that remain unphased after partial phasing
* @return the CDF for the allele counts at marker {@code nextMkr}
*
* @throws IndexOutOfBoundsException if
* {@code currentMkr < -1 || currentMkr >= this.targGT().nMarkers()}
* @throws IndexOutOfBoundsException if
* {@code nextMkr < 0 || nextMkr >= this.targGT().nMarkers()}
* @throws IndexOutOfBoundsException if
* {@code (0 <= currentMkr && currentMkr < this.targGT().nMarkers())} and
* there exists {@code h} such that {@code (0 <= h && h < alleles.length)}
* and {@code (alleles[h] < 0
* || alleles[h] >= this.targGT.marker(currentMkr).nAlleles())}
* @throws IndexOutOfBoundsException if
* {@code alleles.length != this.nHaps()}
* @throws IndexOutOfBoundsException if
* {@code missing.length != this.nTargGT().nSamples()}
* @throws IndexOutOfBoundsException if
* {@code unphHet.length != this.targGT().nSamples()}
* @throws NullPointerException if any array is {@code null}
*/
public int[] phase(int currentMkr, int[] alleles, int nextMkr,
boolean[] missing, boolean[] unphHet) {
checkArrays(alleles, missing, unphHet);
if (currentMkr != -1) {
pbwt.update(alleles, targGT.marker(currentMkr).nAlleles(), a);
}
int[] alCnts = setAlleles(nextMkr, alleles, unphHet, missing);
if (nextMkr>=phasedOverlap) {
phase(alleles, unphHet);
}
return alCnts;
}
private void checkArrays(int[] alleles, boolean[] missing, boolean[] unphHet) {
if (alleles.length != nHaps) {
throw new IllegalArgumentException(String.valueOf(alleles.length));
}
if (missing.length != nTargSamples) {
throw new IllegalArgumentException(String.valueOf(missing.length));
}
if (unphHet.length != nTargSamples) {
throw new IllegalArgumentException(String.valueOf(unphHet.length));
}
}
private void phase(int[] alleles, boolean[] unphHet) {
setInvA(a);
int threshold = 2;
boolean changeMade = true;
while (threshold>0 || changeMade==true) {
changeMade = false;
for (int s=0; s<nTargSamples; ++s) {
if (unphHet[s]) {
changeMade |= phase(s, threshold, alleles, unphHet, a);
}
else {
int h1 = s<<1;
int h2 = h1 | 0b1;
if (alleles[h1] == -1) {
alleles[h1] = impute(alleles, unphHet, a, invA[h1]);
changeMade |= (alleles[h1]>=0);
}
if (alleles[h2] == -1) {
alleles[h2] = impute(alleles, unphHet, a, invA[h2]);
changeMade |= (alleles[h2]>=0);
}
}
}
if (changeMade==false) {
--threshold;
}
}
}
private boolean phase(int s, int threshold, int[] alleles,
boolean[] unphHet, int[] a) {
int h1 = s<<1;
int h2 = h1 | 0b1;
int a1 = alleles[h1];
int a2 = alleles[h2];
assert a1>=0 && a2>=0 && a1!=a2;
int cnt1 = phaseCnt(a, alleles, unphHet, invA[h1], a1, a2);
int cnt2 = phaseCnt(a, alleles, unphHet, invA[h2], a2, a1);
int cnt = cnt1 + cnt2;
if (cnt>=threshold) {
unphHet[s] = false;
return true;
}
if (cnt <= -threshold) {
alleles[h1] = a2;
alleles[h2] = a1;
unphHet[s] = false;
return true;
}
return false;
}
private int phaseCnt(int[] a, int[] alleles, boolean[] unphasedHet,
int ai, int a1, int a2) {
int phaseCnt = 0;
if (ai>0) {
int h = a[ai-1];
int s = h>>1;
if (s>=unphasedHet.length || unphasedHet[s]==false) {
phaseCnt += phaseCnt(alleles[h], a1, a2);
}
}
if ((ai+1)<alleles.length) {
int h = a[ai+1];
int s = h>>1;
if (s>=unphasedHet.length || unphasedHet[s]==false) {
phaseCnt += phaseCnt(alleles[h], a1, a2);
}
}
return phaseCnt;
}
private static int phaseCnt(int adjacentAllele, int a1, int a2) {
if (adjacentAllele==a1) {
return 1;
}
if (adjacentAllele==a2) {
return -1;
}
return 0;
}
private int impute(int[] inputAlleles, boolean[] unphasedHet, int[] a,
int ai) {
int prev = -1;
int next = -1;
if (ai>0) {
int h = a[ai-1];
int s = h>>1;
if (s>=unphasedHet.length || unphasedHet[s]==false) {
prev = inputAlleles[h];
}
}
if ((ai+1)<a.length) {
int h = a[ai+1];
int s = h>>1;
if (s>=unphasedHet.length || unphasedHet[s]==false) {
next = inputAlleles[h];
}
}
if (prev>=0 && (prev==next || next<0)) {
return prev;
}
else if (prev<0 && next>=0) {
return next;
}
return -1;
}
private void setInvA(int[] a) {
for (int j=0; j<a.length; ++j) {
invA[a[j]] = j;
}
}
private int[] setAlleles(int m, int[] inputAlleles, boolean[] unphHet,
boolean[] missing) {
int[] alCnts = new int[targGT.marker(m).nAlleles()];
setTargAlleles(m, inputAlleles, unphHet, missing, alCnts);
if (optRef.isPresent()) {
setRefAlleles(m, inputAlleles, alCnts);
}
// convert allele counts to CDF
for (int j=1; j<alCnts.length; ++j) {
alCnts[j] += alCnts[j-1];
}
return alCnts;
}
private void setTargAlleles(int m, int[] inputAlleles, boolean[] unphHet,
boolean[] missing, int[] alCnts) {
for (int s=0; s<nTargSamples; ++s) {
int h1 = s<<1;
int h2 = h1 | 0b1;
int a1 = targGT.allele(m, h1);
int a2 = targGT.allele(m, h2);
inputAlleles[h1] = a1;
inputAlleles[h2] = a2;
unphHet[s] = (m>=phasedOverlap && (a1>=0 && a2>=0 && a1!=a2));
missing[s] = a1<0 || a2<0;
if (a1>=0) {
++alCnts[a1];
}
if (a2>=0) {
++alCnts[a2];
}
}
}
private void setRefAlleles(int m, int[] inputAlleles, int[] alCnts) {
assert optRef.isPresent();
RefGT refGT = optRef.get();
int refHap = 0;
for (int h1=nTargHaps; h1<nHaps; h1+=2) {
int h2 = h1 | 0b1;
int a1 = refGT.allele(m, refHap++);
int a2 = refGT.allele(m, refHap++);
inputAlleles[h1] = a1;
inputAlleles[h2] = a2;
++alCnts[a1];
++alCnts[a2];
}
}
/**
* Returns an array of bit sets.
* @param nBitSets the size of the returned array
* @param initBitSetCapacity the initial capacity of each bit set in
* the returned array
* @return an array of bit sets
* @throws NegativeArraySizeException if {
* {@code nBitSets < 0 || initBitSetCapacity < 0}
*/
public static BitSet[] bitSets(int nBitSets, int initBitSetCapacity) {
if (nBitSets<0) {
throw new IllegalArgumentException(String.valueOf(nBitSets));
}
return IntStream.range(0, nBitSets)
.mapToObj(j -> new BitSet(initBitSetCapacity))
.toArray(BitSet[]::new);
}
}
|