File: PhaseData.java

package info (click to toggle)
beagle 250227-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,364 kB
  • sloc: java: 17,684; sh: 55; makefile: 11
file content (268 lines) | stat: -rw-r--r-- 8,747 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
 * Copyright (C) 2014-2021 Brian L. Browning
 *
 * This file is part of Beagle
 *
 * Beagle is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Beagle is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
package phase;

import blbutil.FloatArray;
import java.util.stream.IntStream;
import main.Par;
import vcf.MarkerMap;

/**
 * <p>Class {@code PhaseData} stores the current genotype phase estimates
 * and parameter values.</p>
 *
 * <p>Instances of class {@code PhaseData} are thread-safe.</p>
 *
 * @author Brian L. Browning {@code <browning@uw.edu>}
 */
public class PhaseData {

    private final EstPhase estPhase;
    private final float[] leaveUnphProp;
    private final long seed;

    private volatile int it;
    private volatile float lrThreshold;
    private volatile TrProb trProb;
    private volatile float pMismatch;

    /**
     * Constructs a new {@code PhaseData} instance from the specified data.
     * @param fpd the input data for phasing that is the same in each iteration
     * @param seed a seed for generating pseudorandom number
     *
     * @throws NullPointerException if {@code fpd == null}
     */
    public PhaseData(FixedPhaseData fpd, long seed) {
        Par par = fpd.par();
        this.estPhase = new EstPhase(fpd, seed);
        this.leaveUnphProp = leaveUnphasedProp(fpd, estPhase);
        this.seed = seed;
        this.it = 0;
        this.lrThreshold = lrThreshold(par, it);
        float recombIntensity = (float) 0.04f*fpd.par().ne()/fpd.nHaps();
        this.trProb = new TrProb(fpd.stage1Map(), recombIntensity);
        this.pMismatch = Par.liStephensPMismatch(fpd.nHaps());
    }

    static float lrThreshold(Par par, int it) {
        int nBurninIts = par.burnin();
        int nItsM1 = par.iterations() - 1;
        if (it<nBurninIts) {
            return Float.POSITIVE_INFINITY;
        }
        else if (it==(nItsM1 + nBurninIts)) {
            return 1f;
        }
        else {
            double lastVal = 4.0;
            double exp = (double) (nItsM1 - (it-nBurninIts)) / nItsM1;
            double base = par.initial_lr()/lastVal;
            return (float) (lastVal*Math.pow(base, exp));
        }
    }

    private static float[] leaveUnphasedProp(FixedPhaseData fpd,
            EstPhase estPhase) {
        int nIterations = fpd.par().iterations();
        int[] floatBits = IntStream.range(0, fpd.targGT().nSamples())
                .parallel()
                .map(s -> estPhase.get(s).nUnphased())
                .mapToDouble(cnt -> Math.pow(cnt, -1.0/nIterations))
                .mapToInt(p -> Float.floatToRawIntBits((float) p))
                .toArray();
        float[] fa = new float[floatBits.length];
        for (int j=0; j<fa.length; ++j) {
            fa[j] = Float.intBitsToFloat(floatBits[j]);
        }
        return fa;
    }

    /**
     * Returns the recombination intensity.
     * @return the recombination intensity
     */
    public float recombIntensity() {
        return trProb.recombIntensity;
    }

    /**
     * Updates the recombination intensity.
     * @param recombIntensity the updated recombination intensity.
     * @throws IllegalArgumentException if
     * {@code recombIntensity <= 0f || Float.isFinite(recombIntensity) == false}
     */
    public void updateRecombIntensity(float recombIntensity) {
        if (recombIntensity<=0f || Float.isFinite(recombIntensity)==false) {
            throw new IllegalArgumentException(String.valueOf(recombIntensity));
        }
        trProb = new TrProb(estPhase.fpd().stage1Map(), recombIntensity);
    }

    /**
     * Returns the effective population size.
     * @return the effective population size
     */
    public long ne() {
        return ne(trProb.recombIntensity);
    }

    /**
     * Returns the effective population size.
     * @param recombIntensity the recombination intensity
     * @return the effective population size
     */
    private long ne(float recombIntensity) {
        return (long) Math.ceil(25*recombIntensity*estPhase.fpd().nHaps());
    }

    /**
     * Return a {@code FloatArray} of size
     * {@code this.fpd().stage1TargXGT().nMarkers()}
     * whose {@code k}-th element is the probability of transitioning to a
     * random HMM state between the {@code (k-1)}-st and {@code k}-th
     * markers.
     * @return the probability of transitioning to a random HMM state between
     * pair of consecutive markers
     */
    public FloatArray pRecomb() {
        return trProb.pRecomb;
    }

    /**
     * Returns the allele mismatch probability.
     * @return the allele mismatch probability
     */
    public float pMismatch() {
        return pMismatch;
    }

    /**
     * Sets the allele mismatch probability to the specified value.
     * @param pMismatch the allele mismatch probability
     * @throws IllegalArgumentException if
     * {@code pMismatch < 0.0 || pMismatch > 1.0
     *      || Float.isFinite(pMismatch) == false}
     */
    public void updatePMismatch(float pMismatch) {
        if (pMismatch < 0.0 || pMismatch > 1.0
                || Float.isFinite(pMismatch)==false) {
            throw new IllegalArgumentException(String.valueOf(pMismatch));
        }
        this.pMismatch = pMismatch;
    }

    /**
     * Increments the iteration by one.
     */
    public void incrementIt() {
        ++it;
        lrThreshold = lrThreshold(estPhase.fpd().par(), it);
    }

    /**
     * Returns the current iteration.  The initial iteration is 0.
     * @return the current iteration
     */
    public int it() {
        return it;
    }

    /**
     * Sets the iteration equal to the maximum of {@code this.it()}
     * and {@code this.fpd().par().burnin()}.
     */
    public void advanceToFirstPhasingIt() {
        int nBurninIts = estPhase.fpd().par().burnin();
        if (it<nBurninIts) {
            it = nBurninIts;
            lrThreshold = lrThreshold(estPhase.fpd().par(), it);
        }
    }

    /**
     * Returns the input data for phasing that is the same in each iteration.
     * @return the input data for phasing that is the same in each iteration
     */
    public FixedPhaseData fpd() {
        return estPhase.fpd();
    }

    /**
     * Returns the estimated phased genotypes.
     * @return the estimated phased genotypes
     */
    public EstPhase estPhase() {
        return estPhase;
    }

    /**
     * Constructs and returns the coded steps. Since a {@code CodedSteps}
     * object can consume substantial memory, the returned object is not
     * pre-computed, but is constructed upon invocation of this method.
     * @return the coded steps
     */
    public CodedSteps codedSteps() {
        return new CodedSteps(estPhase);
    }

    /**
     * Returns the proportion of unphased heterozygotes at the start of a
     * phasing iteration that will be left unphased at the end of a
     * phasing iteration.
     * @param sample the sample index
     * @return the proportion of unphased heterozygotes at the start of a
     * phasing iteration that will be left unphased at the end of a
     * phasing iteration
     * @throws IndexOutOfBoundsException if
     * {@code sample < 0 || sample >= this.fpd().targGT().nSamples()}
     */
    public float leaveUnphasedProp(int sample) {
        return leaveUnphProp[sample];
    }

    /**
     * Returns the threshold on the phasing likelihood ratio that
     * determines whether a pair of heterozygotes will be marked as phased.
     * @return the threshold on the phasing likelihood ratio that
     * determines whether a pair of heterozygotes will be marked as phased
     */
    public float lrThreshold() {
        return lrThreshold;
    }

    /**
     * Returns an iteration-dependent seed for generating pseudorandom numbers.
     * @return an iteration-dependent seed for generating pseudorandom numbers
     */
    public long seed() {
        return seed + it;
    }

    private static class TrProb {

        private final float recombIntensity;
        private final FloatArray pRecomb;

        public TrProb(MarkerMap map, float recombItensity) {
            this.recombIntensity = recombItensity;
            this.pRecomb = map.pRecomb(recombIntensity);
        }
    }
}