File: Regress.java

package info (click to toggle)
beagle 5.1-200518%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,480 kB
  • sloc: java: 14,430; sh: 55; makefile: 11
file content (172 lines) | stat: -rw-r--r-- 6,058 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
 * Copyright (C) 2014-2016 Brian L. Browning
 *
 * This file is part of Beagle
 *
 * Beagle is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Beagle is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
package math;

import java.util.concurrent.atomic.DoubleAdder;
import java.util.concurrent.atomic.LongAdder;

/**
 * <p>Class {@code Regress} estimates a regression coefficient.
 * </p>
 * <p>Instances of class {@code Regress} are not thread-safe, but
 * concurrent updates are permitted, and invocation of the {@code beta()}
 * method in the absence of concurrent updates returns an accurate result.
 * </p>
 *
 * @author Brian L. Browning {@code <browning@uw.edu>}
 */
public class Regress {

    private final LongAdder cnt;
    private final DoubleAdder sumX;
    private final DoubleAdder sumY;
    private final DoubleAdder sumXX;
    private final DoubleAdder sumXY;

    /**
     * Constructs a new {@code Regress} instance.
     */
    public Regress() {
        this.cnt = new LongAdder();
        this.sumX = new DoubleAdder();
        this.sumY = new DoubleAdder();
        this.sumXX = new DoubleAdder();
        this.sumXY = new DoubleAdder();
    }

    /**
     * Records the specified values of the dependent and independent variables.
     * @param x the value of the independent variable
     * @param y the value of the dependent variable
     */
    public void add(double x, double y) {
        cnt.increment();
        sumX.add(x);
        sumY.add(y);
        sumXX.add(x*x);
        sumXY.add(x*y);
    }

    /**
     * Records the specified values of the dependent and independent variables.
     * @param regress recorded values of the independent and dependent variables
     * @throws NullPointerException if {@code regress == null}t
     */
    public void add(Regress regress) {
        this.sumX.add(regress.sumX());
        this.sumY.add(regress.sumY());
        this.sumXX.add(regress.sumXX());
        this.sumXY.add(regress.sumXY());
        this.cnt.add(regress.cnt());
    }

    /**
     * Returns the number of recorded values of the independent variable.
     * The returned value is NOT an atomic snapshot. An accurate result is
     * guaranteed only if no concurrent updates occur during method invocation.
     *
     * @return the number of recorded values of the independent variable
     */
    public long cnt() {
        return cnt.sum();
    }

    /**
     * Returns the sum of recorded values of the independent variable.
     * The returned value is NOT an atomic snapshot. An accurate result is
     * guaranteed only if no concurrent updates occur during method invocation.
     * @return the sum of recorded values of the independent variable
     */
    public double sumX() {
        return sumX.sum();
    }

    /**
     * Returns the sum of recorded values of the dependent variable.
     * The returned value is NOT an atomic snapshot. An accurate result is
     * guaranteed only if no concurrent updates occur during method invocation.
     * @return the sum of recorded values of the dependent variable
     */
    public double sumY() {
        return sumY.sum();
    }

    /**
     * Returns the sum of the squared recorded values of the independent
     * variable.
     * The returned value is NOT an atomic snapshot. An accurate result is
     * guaranteed only if no concurrent updates occur during method invocation.
     * @return the sum of the squared recorded values of the independent variable
     */
    public double sumXX() {
        return sumXX.sum();
    }

    /**
     * Returns the sum of the products of the recorded values of the
     * independent and dependent variables.
     * The returned value is NOT an atomic snapshot. An accurate result is
     * guaranteed only if no concurrent updates occur during method invocation.
     * @return the sum of the products of the recorded values of the
     * independent and dependent variables
     */
    public double sumXY() {
        return sumXY.sum();
    }

    /**
     * Deletes all recorded values from {@code this}.
     */
    public void reset() {
        cnt.reset();
        sumX.reset();
        sumY.reset();
        sumXX.reset();
        sumXY.reset();
    }

    /**
     * Returns the regression coefficient for the recorded values of the
     * independent and dependent variables. The returned value is NOT an
     * atomic snapshot. An accurate result is guaranteed only if no concurrent
     * updates occur during method invocation.
     * @return the regression coefficient for the recorded values of the
     * independent and dependent variables
     */
    public double beta() {
        long n = cnt.sum();
        double sx = sumX.sum();
        double sy = sumY.sum();
        double sxx = sumXX.sum();
        double sxy = sumXY.sum();
        return (n*sxy - (sx*sy))/(n*sxx - (sx*sx));
    }

//    public static void main(String[] args) {
//        double[] x = new double[] {1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65, 1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83};
//        double[] y = new double[] {52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29, 63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46};
//
//        Regress regress = new Regress();
//        for (int j=0; j<x.length; ++j) {
//            regress.add(x[j], y[j]);
//        }
//        System.out.println("Beta from Wikipedia Simple Linear Regression article: 61.272");
//        System.out.println("Calculated Beta:                                      " + regress.beta());
//    }
}