1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
#include "dat.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
static uint64 next_id = 1;
static int cur_prime = 0;
static Job *all_jobs_init[12289] = {0};
static Job **all_jobs = all_jobs_init;
static size_t all_jobs_cap = 12289; /* == primes[0] */
static size_t all_jobs_used = 0;
static int hash_table_was_oom = 0;
static void rehash(int);
static int
_get_job_hash_index(uint64 job_id)
{
return job_id % all_jobs_cap;
}
static void
store_job(Job *j)
{
int index = 0;
index = _get_job_hash_index(j->r.id);
j->ht_next = all_jobs[index];
all_jobs[index] = j;
all_jobs_used++;
/* accept a load factor of 4 */
if (all_jobs_used > (all_jobs_cap << 2)) rehash(1);
}
static void
rehash(int is_upscaling)
{
Job **old = all_jobs;
size_t old_cap = all_jobs_cap, old_used = all_jobs_used, i;
int old_prime = cur_prime;
int d = is_upscaling ? 1 : -1;
if (cur_prime + d >= NUM_PRIMES) return;
if (cur_prime + d < 0) return;
if (is_upscaling && hash_table_was_oom) return;
cur_prime += d;
all_jobs_cap = primes[cur_prime];
all_jobs = calloc(all_jobs_cap, sizeof(Job *));
if (!all_jobs) {
twarnx("Failed to allocate %zu new hash buckets", all_jobs_cap);
hash_table_was_oom = 1;
cur_prime = old_prime;
all_jobs = old;
all_jobs_cap = old_cap;
all_jobs_used = old_used;
return;
}
all_jobs_used = 0;
hash_table_was_oom = 0;
for (i = 0; i < old_cap; i++) {
while (old[i]) {
Job *j = old[i];
old[i] = j->ht_next;
j->ht_next = NULL;
store_job(j);
}
}
if (old != all_jobs_init) {
free(old);
}
}
Job *
job_find(uint64 job_id)
{
int index = _get_job_hash_index(job_id);
Job *jh = all_jobs[index];
while (jh && jh->r.id != job_id)
jh = jh->ht_next;
return jh;
}
Job *
allocate_job(int body_size)
{
Job *j;
j = malloc(sizeof(Job) + body_size);
if (!j) {
twarnx("OOM");
return (Job *) 0;
}
memset(j, 0, sizeof(Job));
j->r.created_at = nanoseconds();
j->r.body_size = body_size;
j->body = (char *)j + sizeof(Job);
job_list_reset(j);
return j;
}
Job *
make_job_with_id(uint32 pri, int64 delay, int64 ttr,
int body_size, Tube *tube, uint64 id)
{
Job *j;
j = allocate_job(body_size);
if (!j) {
twarnx("OOM");
return (Job *) 0;
}
if (id) {
j->r.id = id;
if (id >= next_id) next_id = id + 1;
} else {
j->r.id = next_id++;
}
j->r.pri = pri;
j->r.delay = delay;
j->r.ttr = ttr;
store_job(j);
TUBE_ASSIGN(j->tube, tube);
return j;
}
static void
job_hash_free(Job *j)
{
Job **slot;
slot = &all_jobs[_get_job_hash_index(j->r.id)];
while (*slot && *slot != j) slot = &(*slot)->ht_next;
if (*slot) {
*slot = (*slot)->ht_next;
--all_jobs_used;
}
// Downscale when the hashmap is too sparse
if (all_jobs_used < (all_jobs_cap >> 4)) rehash(0);
}
void
job_free(Job *j)
{
if (j) {
TUBE_ASSIGN(j->tube, NULL);
if (j->r.state != Copy) job_hash_free(j);
}
free(j);
}
void
job_setpos(void *j, size_t pos)
{
((Job *)j)->heap_index = pos;
}
int
job_pri_less(void *ja, void *jb)
{
Job *a = (Job *)ja;
Job *b = (Job *)jb;
if (a->r.pri < b->r.pri) return 1;
if (a->r.pri > b->r.pri) return 0;
return a->r.id < b->r.id;
}
int
job_delay_less(void *ja, void *jb)
{
Job *a = ja;
Job *b = jb;
if (a->r.deadline_at < b->r.deadline_at) return 1;
if (a->r.deadline_at > b->r.deadline_at) return 0;
return a->r.id < b->r.id;
}
Job *
job_copy(Job *j)
{
if (!j)
return NULL;
Job *n = malloc(sizeof(Job) + j->r.body_size);
if (!n) {
twarnx("OOM");
return (Job *) 0;
}
memcpy(n, j, sizeof(Job) + j->r.body_size);
job_list_reset(n);
n->file = NULL; /* copies do not have refcnt on the wal */
n->tube = 0; /* Don't use memcpy for the tube, which we must refcount. */
TUBE_ASSIGN(n->tube, j->tube);
/* Mark this job as a copy so it can be appropriately freed later on */
n->r.state = Copy;
return n;
}
const char *
job_state(Job *j)
{
if (j->r.state == Ready) return "ready";
if (j->r.state == Reserved) return "reserved";
if (j->r.state == Buried) return "buried";
if (j->r.state == Delayed) return "delayed";
return "invalid";
}
// job_list_reset detaches head from the list,
// marking the list starting in head pointing to itself.
void
job_list_reset(Job *head)
{
head->prev = head;
head->next = head;
}
int
job_list_is_empty(Job *head)
{
return head->next == head && head->prev == head;
}
Job *
job_list_remove(Job *j)
{
if (!j) return NULL;
if (job_list_is_empty(j)) return NULL; /* not in a doubly-linked list */
j->next->prev = j->prev;
j->prev->next = j->next;
job_list_reset(j);
return j;
}
void
job_list_insert(Job *head, Job *j)
{
if (!job_list_is_empty(j)) return; /* already in a linked list */
j->prev = head->prev;
j->next = head;
head->prev->next = j;
head->prev = j;
}
/* for unit tests */
size_t
get_all_jobs_used()
{
return all_jobs_used;
}
|