File: T0Comp.cs

package info (click to toggle)
bearssl 0.6%2Bdfsg.1-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 4,484 kB
  • sloc: ansic: 49,044; cs: 3,473; sh: 524; makefile: 40
file content (2123 lines) | stat: -rw-r--r-- 49,233 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
/*
 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

using System;
using System.Collections.Generic;
using System.IO;
using System.Reflection;
using System.Text;

/*
 * This is the main compiler class.
 */

public class T0Comp {

	/*
	 * Command-line entry point.
	 */
	public static void Main(string[] args)
	{
		try {
			List<string> r = new List<string>();
			string outBase = null;
			List<string> entryPoints = new List<string>();
			string coreRun = null;
			bool flow = true;
			int dsLim = 32;
			int rsLim = 32;
			for (int i = 0; i < args.Length; i ++) {
				string a = args[i];
				if (!a.StartsWith("-")) {
					r.Add(a);
					continue;
				}
				if (a == "--") {
					for (;;) {
						if (++ i >= args.Length) {
							break;
						}
						r.Add(args[i]);
					}
					break;
				}
				while (a.StartsWith("-")) {
					a = a.Substring(1);
				}
				int j = a.IndexOf('=');
				string pname;
				string pval, pval2;
				if (j < 0) {
					pname = a.ToLowerInvariant();
					pval = null;
					pval2 = (i + 1) < args.Length
						? args[i + 1] : null;
				} else {
					pname = a.Substring(0, j).Trim()
						.ToLowerInvariant();
					pval = a.Substring(j + 1);
					pval2 = null;
				}
				switch (pname) {
				case "o":
				case "out":
					if (pval == null) {
						if (pval2 == null) {
							Usage();
						}
						i ++;
						pval = pval2;
					}
					if (outBase != null) {
						Usage();
					}
					outBase = pval;
					break;
				case "r":
				case "run":
					if (pval == null) {
						if (pval2 == null) {
							Usage();
						}
						i ++;
						pval = pval2;
					}
					coreRun = pval;
					break;
				case "m":
				case "main":
					if (pval == null) {
						if (pval2 == null) {
							Usage();
						}
						i ++;
						pval = pval2;
					}
					foreach (string ep in pval.Split(',')) {
						string epz = ep.Trim();
						if (epz.Length > 0) {
							entryPoints.Add(epz);
						}
					}
					break;
				case "nf":
				case "noflow":
					flow = false;
					break;
				default:
					Usage();
					break;
				}
			}
			if (r.Count == 0) {
				Usage();
			}
			if (outBase == null) {
				outBase = "t0out";
			}
			if (entryPoints.Count == 0) {
				entryPoints.Add("main");
			}
			if (coreRun == null) {
				coreRun = outBase;
			}
			T0Comp tc = new T0Comp();
			tc.enableFlowAnalysis = flow;
			tc.dsLimit = dsLim;
			tc.rsLimit = rsLim;
			using (TextReader tr = new StreamReader(
				Assembly.GetExecutingAssembly()
				.GetManifestResourceStream("t0-kernel")))
			{
				tc.ProcessInput(tr);
			}
			foreach (string a in r) {
				Console.WriteLine("[{0}]", a);
				using (TextReader tr = File.OpenText(a)) {
					tc.ProcessInput(tr);
				}
			}
			tc.Generate(outBase, coreRun, entryPoints.ToArray());
		} catch (Exception e) {
			Console.WriteLine(e.ToString());
			Environment.Exit(1);
		}
	}

	static void Usage()
	{
		Console.WriteLine(
"usage: T0Comp.exe [ options... ] file...");
		Console.WriteLine(
"options:");
		Console.WriteLine(
"   -o file    use 'file' as base for output file name (default: 't0out')");
		Console.WriteLine(
"   -r name    use 'name' as base for run function (default: same as output)");
		Console.WriteLine(
"   -m name[,name...]");
		Console.WriteLine(
"              define entry point(s)");
		Console.WriteLine(
"   -nf        disable flow analysis");
		Environment.Exit(1);
	}

	/*
	 * If 'delayedChar' is Int32.MinValue then there is no delayed
	 * character.
	 * If 'delayedChar' equals x >= 0 then there is one delayed
	 * character of value x.
	 * If 'delayedChar' equals y < 0 then there are two delayed
	 * characters, a newline (U+000A) followed by character of
	 * value -(y+1).
	 */
	TextReader currentInput;
	int delayedChar;

	/*
	 * Common StringBuilder used to parse tokens; it is reused for
	 * each new token.
	 */
	StringBuilder tokenBuilder;

	/*
	 * There may be a delayed token in some cases.
	 */
	String delayedToken;

	/*
	 * Defined words are referenced by name in this map. Names are
	 * string-sensitive; for better reproducibility, the map is sorted
	 * (ordinal order).
	 */
	IDictionary<string, Word> words;

	/*
	 * Last defined word is also referenced in 'lastWord'. This is
	 * used by 'immediate'.
	 */
	Word lastWord;

	/*
	 * When compiling, this builder is used. A stack saves other
	 * builders in case of nested definition.
	 */
	WordBuilder wordBuilder;
	Stack<WordBuilder> savedWordBuilders;

	/*
	 * C code defined for words is kept in this map, by word name.
	 */
	IDictionary<string, string> allCCode;

	/*
	 * 'compiling' is true when compiling tokens to a word, false
	 * when interpreting them.
	 */
	bool compiling;

	/*
	 * 'quitRunLoop' is set to true to trigger exit of the
	 * interpretation loop when the end of the current input file
	 * is reached.
	 */
	bool quitRunLoop;

	/*
	 * 'extraCode' is for C code that is to be added as preamble to
	 * the C output.
	 */
	List<string> extraCode;

	/*
	 * 'extraCodeDefer' is for C code that is to be added in the C
	 * output _after_ the data and code blocks.
	 */
	List<string> extraCodeDefer;

	/*
	 * 'dataBlock' is the data block in which constant data bytes
	 * are accumulated.
	 */
	ConstData dataBlock;

	/*
	 * Counter for blocks of constant data.
	 */
	long currentBlobID;

	/*
	 * Flow analysis enable flag.
	 */
	bool enableFlowAnalysis;

	/*
	 * Data stack size limit.
	 */
	int dsLimit;

	/*
	 * Return stack size limit.
	 */
	int rsLimit;

	T0Comp()
	{
		tokenBuilder = new StringBuilder();
		words = new SortedDictionary<string, Word>(
			StringComparer.Ordinal);
		savedWordBuilders = new Stack<WordBuilder>();
		allCCode = new SortedDictionary<string, string>(
			StringComparer.Ordinal);
		compiling = false;
		extraCode = new List<string>();
		extraCodeDefer = new List<string>();
		enableFlowAnalysis = true;

		/*
		 * Native words are predefined and implemented only with
		 * native code. Some may be part of the generated output,
		 * if C code is set for them.
		 */

		/*
		 * add-cc:
		 * Parses next token as a word name, then a C code snippet.
		 * Sets the C code for that word.
		 */
		AddNative("add-cc:", false, SType.BLANK, cpu => {
			string tt = Next();
			if (tt == null) {
				throw new Exception(
					"EOF reached (missing name)");
			}
			if (allCCode.ContainsKey(tt)) {
				throw new Exception(
					"C code already set for: " + tt);
			}
			allCCode[tt] = ParseCCode();
		});

		/*
		 * cc:
		 * Parses next token as a word name, then a C code snippet.
		 * A new word is defined, that throws an exception when
		 * invoked during compilation. The C code is set for that
		 * new word.
		 */
		AddNative("cc:", false, SType.BLANK, cpu => {
			string tt = Next();
			if (tt == null) {
				throw new Exception(
					"EOF reached (missing name)");
			}
			Word w = AddNative(tt, false, cpu2 => {
				throw new Exception(
					"C-only word: " + tt);
			});
			if (allCCode.ContainsKey(tt)) {
				throw new Exception(
					"C code already set for: " + tt);
			}
			SType stackEffect;
			allCCode[tt] = ParseCCode(out stackEffect);
			w.StackEffect = stackEffect;
		});

		/*
		 * preamble
		 * Parses a C code snippet, then adds it to the generated
		 * output preamble.
		 */
		AddNative("preamble", false, SType.BLANK, cpu => {
			extraCode.Add(ParseCCode());
		});

		/*
		 * postamble
		 * Parses a C code snippet, then adds it to the generated
		 * output after the data and code blocks.
		 */
		AddNative("postamble", false, SType.BLANK, cpu => {
			extraCodeDefer.Add(ParseCCode());
		});

		/*
		 * make-CX
		 * Expects two integers and a string, and makes a
		 * constant that stands for the string as a C constant
		 * expression. The two integers are the expected range
		 * (min-max, inclusive).
		 */
		AddNative("make-CX", false, new SType(3, 1), cpu => {
			TValue c = cpu.Pop();
			if (!(c.ptr is TPointerBlob)) {
				throw new Exception(string.Format(
					"'{0}' is not a string", c));
			}
			int max = cpu.Pop();
			int min = cpu.Pop();
			TValue tv = new TValue(0, new TPointerExpr(
				c.ToString(), min, max));
			cpu.Push(tv);
		});

		/*
		 * CX  (immediate)
		 * Parses two integer constants, then a C code snippet.
		 * It then pushes on the stack, or compiles to the
		 * current word, a value consisting of the given C
		 * expression; the two integers indicate the expected
		 * range (min-max, inclusive) of the C expression when
		 * evaluated.
		 */
		AddNative("CX", true, cpu => {
			string tt = Next();
			if (tt == null) {
				throw new Exception(
					"EOF reached (missing min value)");
			}
			int min = ParseInteger(tt);
			tt = Next();
			if (tt == null) {
				throw new Exception(
					"EOF reached (missing max value)");
			}
			int max = ParseInteger(tt);
			if (max < min) {
				throw new Exception("min/max in wrong order");
			}
			TValue tv = new TValue(0, new TPointerExpr(
				ParseCCode().Trim(), min, max));
			if (compiling) {
				wordBuilder.Literal(tv);
			} else {
				cpu.Push(tv);
			}
		});

		/*
		 * co
		 * Interrupt the current execution. This implements
		 * coroutines. It cannot be invoked during compilation.
		 */
		AddNative("co", false, SType.BLANK, cpu => {
			throw new Exception("No coroutine in compile mode");
		});

		/*
		 * :
		 * Parses next token as word name. It begins definition
		 * of that word, setting it as current target for
		 * word building. Any previously opened word is saved
		 * and will become available again as a target when that
		 * new word is finished building.
		 */
		AddNative(":", false, cpu => {
			string tt = Next();
			if (tt == null) {
				throw new Exception(
					"EOF reached (missing name)");
			}
			if (compiling) {
				savedWordBuilders.Push(wordBuilder);
			} else {
				compiling = true;
			}
			wordBuilder = new WordBuilder(this, tt);
			tt = Next();
			if (tt == null) {
				throw new Exception(
					"EOF reached (while compiling)");
			}
			if (tt == "(") {
				SType stackEffect = ParseStackEffectNF();
				if (!stackEffect.IsKnown) {
					throw new Exception(
						"Invalid stack effect syntax");
				}
				wordBuilder.StackEffect = stackEffect;
			} else {
				delayedToken = tt;
			}
		});

		/*
		 * Pops a string as word name, and two integers as stack
		 * effect. It begins definition of that word, setting it
		 * as current target for word building. Any previously
		 * opened word is saved and will become available again as
		 * a target when that new word is finished building.
		 *
		 * Stack effect is the pair 'din dout'. If din is negative,
		 * then the stack effect is "unknown". If din is nonnegative
		 * but dout is negative, then the word is reputed never to
		 * return.
		 */
		AddNative("define-word", false, cpu => {
			int dout = cpu.Pop();
			int din = cpu.Pop();
			TValue s = cpu.Pop();
			if (!(s.ptr is TPointerBlob)) {
				throw new Exception(string.Format(
					"Not a string: '{0}'", s));
			}
			string tt = s.ToString();
			if (compiling) {
				savedWordBuilders.Push(wordBuilder);
			} else {
				compiling = true;
			}
			wordBuilder = new WordBuilder(this, tt);
			wordBuilder.StackEffect = new SType(din, dout);
		});

		/*
		 * ;  (immediate)
		 * Ends current word. The current word is registered under
		 * its name, and the previously opened word (if any) becomes
		 * again the building target.
		 */
		AddNative(";", true, cpu => {
			if (!compiling) {
				throw new Exception("Not compiling");
			}
			Word w = wordBuilder.Build();
			string name = w.Name;
			if (words.ContainsKey(name)) {
				throw new Exception(
					"Word already defined: " + name);
			}
			words[name] = w;
			lastWord = w;
			if (savedWordBuilders.Count > 0) {
				wordBuilder = savedWordBuilders.Pop();
			} else {
				wordBuilder = null;
				compiling = false;
			}
		});

		/*
		 * immediate
		 * Sets the last defined word as immediate.
		 */
		AddNative("immediate", false, cpu => {
			if (lastWord == null) {
				throw new Exception("No word defined yet");
			}
			lastWord.Immediate = true;
		});

		/*
		 * literal  (immediate)
		 * Pops the current TOS value, and add in the current word
		 * the action of pushing that value. This cannot be used
		 * when no word is being built.
		 */
		WordNative wliteral = AddNative("literal", true, cpu => {
			CheckCompiling();
			wordBuilder.Literal(cpu.Pop());
		});

		/*
		 * compile
		 * Pops the current TOS value, which must be an XT (pointer
		 * to a word); the action of calling that word is compiled
		 * in the current word.
		 */
		WordNative wcompile = AddNative("compile", false, cpu => {
			CheckCompiling();
			wordBuilder.Call(cpu.Pop().ToXT());
		});

		/*
		 * postpone  (immediate)
		 * Parses the next token as a word name, and add to the
		 * current word the action of calling that word. This
		 * basically removes immediatety from the next word.
		 */
		AddNative("postpone", true, cpu => {
			CheckCompiling();
			string tt = Next();
			if (tt == null) {
				throw new Exception(
					"EOF reached (missing name)");
			}
			TValue v;
			bool isVal = TryParseLiteral(tt, out v);
			Word w = LookupNF(tt);
			if (isVal && w != null) {
				throw new Exception(String.Format(
					"Ambiguous: both defined word and"
					+ " literal: {0}", tt));
			}
			if (isVal) {
				wordBuilder.Literal(v);
				wordBuilder.CallExt(wliteral);
			} else if (w != null) {
				if (w.Immediate) {
					wordBuilder.CallExt(w);
				} else {
					wordBuilder.Literal(new TValue(0,
						new TPointerXT(w)));
					wordBuilder.CallExt(wcompile);
				}
			} else {
				wordBuilder.Literal(new TValue(0,
					new TPointerXT(tt)));
				wordBuilder.CallExt(wcompile);
			}
		});

		/*
		 * Interrupt compilation with an error.
		 */
		AddNative("exitvm", false, cpu => {
			throw new Exception();
		});

		/*
		 * Open a new data block. Its symbolic address is pushed
		 * on the stack.
		 */
		AddNative("new-data-block", false, cpu => {
			dataBlock = new ConstData(this);
			cpu.Push(new TValue(0, new TPointerBlob(dataBlock)));
		});

		/*
		 * Define a new data word. The data address and name are
		 * popped from the stack.
		 */
		AddNative("define-data-word", false, cpu => {
			string name = cpu.Pop().ToString();
			TValue va = cpu.Pop();
			TPointerBlob tb = va.ptr as TPointerBlob;
			if (tb == null) {
				throw new Exception(
					"Address is not a data area");
			}
			Word w = new WordData(this, name, tb.Blob, va.x);
			if (words.ContainsKey(name)) {
				throw new Exception(
					"Word already defined: " + name);
			}
			words[name] = w;
			lastWord = w;
		});

		/*
		 * Get an address pointing at the end of the current
		 * data block. This is the address of the next byte that
		 * will be added.
		 */
		AddNative("current-data", false, cpu => {
			if (dataBlock == null) {
				throw new Exception(
					"No current data block");
			}
			cpu.Push(new TValue(dataBlock.Length,
				new TPointerBlob(dataBlock)));
		});

		/*
		 * Add a byte value to the data block.
		 */
		AddNative("data-add8", false, cpu => {
			if (dataBlock == null) {
				throw new Exception(
					"No current data block");
			}
			int v = cpu.Pop();
			if (v < 0 || v > 0xFF) {
				throw new Exception(
					"Byte value out of range: " + v);
			}
			dataBlock.Add8((byte)v);
		});

		/*
		 * Set a byte value in the data block.
		 */
		AddNative("data-set8", false, cpu => {
			TValue va = cpu.Pop();
			TPointerBlob tb = va.ptr as TPointerBlob;
			if (tb == null) {
				throw new Exception(
					"Address is not a data area");
			}
			int v = cpu.Pop();
			if (v < 0 || v > 0xFF) {
				throw new Exception(
					"Byte value out of range: " + v);
			}
			tb.Blob.Set8(va.x, (byte)v);
		});

		/*
		 * Get a byte value from a data block.
		 */
		AddNative("data-get8", false, new SType(1, 1), cpu => {
			TValue va = cpu.Pop();
			TPointerBlob tb = va.ptr as TPointerBlob;
			if (tb == null) {
				throw new Exception(
					"Address is not a data area");
			}
			int v = tb.Blob.Read8(va.x);
			cpu.Push(v);
		});

		/*
		 *
		 */
		AddNative("compile-local-read", false, cpu => {
			CheckCompiling();
			wordBuilder.GetLocal(cpu.Pop().ToString());
		});
		AddNative("compile-local-write", false, cpu => {
			CheckCompiling();
			wordBuilder.PutLocal(cpu.Pop().ToString());
		});

		AddNative("ahead", true, cpu => {
			CheckCompiling();
			wordBuilder.Ahead();
		});
		AddNative("begin", true, cpu => {
			CheckCompiling();
			wordBuilder.Begin();
		});
		AddNative("again", true, cpu => {
			CheckCompiling();
			wordBuilder.Again();
		});
		AddNative("until", true, cpu => {
			CheckCompiling();
			wordBuilder.AgainIfNot();
		});
		AddNative("untilnot", true, cpu => {
			CheckCompiling();
			wordBuilder.AgainIf();
		});
		AddNative("if", true, cpu => {
			CheckCompiling();
			wordBuilder.AheadIfNot();
		});
		AddNative("ifnot", true, cpu => {
			CheckCompiling();
			wordBuilder.AheadIf();
		});
		AddNative("then", true, cpu => {
			CheckCompiling();
			wordBuilder.Then();
		});
		AddNative("cs-pick", false, cpu => {
			CheckCompiling();
			wordBuilder.CSPick(cpu.Pop());
		});
		AddNative("cs-roll", false, cpu => {
			CheckCompiling();
			wordBuilder.CSRoll(cpu.Pop());
		});
		AddNative("next-word", false, cpu => {
			string s = Next();
			if (s == null) {
				throw new Exception("No next word (EOF)");
			}
			cpu.Push(StringToBlob(s));
		});
		AddNative("parse", false, cpu => {
			int d = cpu.Pop();
			string s = ReadTerm(d);
			cpu.Push(StringToBlob(s));
		});
		AddNative("char", false, cpu => {
			int c = NextChar();
			if (c < 0) {
				throw new Exception("No next character (EOF)");
			}
			cpu.Push(c);
		});
		AddNative("'", false, cpu => {
			string name = Next();
			cpu.Push(new TValue(0, new TPointerXT(name)));
		});

		/*
		 * The "execute" word is valid in generated C code, but
		 * since it jumps to a runtime pointer, its actual stack
		 * effect cannot be computed in advance.
		 */
		AddNative("execute", false, cpu => {
			cpu.Pop().Execute(this, cpu);
		});

		AddNative("[", true, cpu => {
			CheckCompiling();
			compiling = false;
		});
		AddNative("]", false, cpu => {
			compiling = true;
		});
		AddNative("(local)", false, cpu => {
			CheckCompiling();
			wordBuilder.DefLocal(cpu.Pop().ToString());
		});
		AddNative("ret", true, cpu => {
			CheckCompiling();
			wordBuilder.Ret();
		});

		AddNative("drop", false, new SType(1, 0), cpu => {
			cpu.Pop();
		});
		AddNative("dup", false, new SType(1, 2), cpu => {
			cpu.Push(cpu.Peek(0));
		});
		AddNative("swap", false, new SType(2, 2), cpu => {
			cpu.Rot(1);
		});
		AddNative("over", false, new SType(2, 3), cpu => {
			cpu.Push(cpu.Peek(1));
		});
		AddNative("rot", false, new SType(3, 3), cpu => {
			cpu.Rot(2);
		});
		AddNative("-rot", false, new SType(3, 3), cpu => {
			cpu.NRot(2);
		});

		/*
		 * "roll" and "pick" are special in that the stack slot
		 * they inspect might be known only at runtime, so an
		 * absolute stack effect cannot be attributed. Instead,
		 * we simply hope that the caller knows what it is doing,
		 * and we use a simple stack effect for just the count
		 * value and picked value.
		 */
		AddNative("roll", false, new SType(1, 0), cpu => {
			cpu.Rot(cpu.Pop());
		});
		AddNative("pick", false, new SType(1, 1), cpu => {
			cpu.Push(cpu.Peek(cpu.Pop()));
		});

		AddNative("+", false, new SType(2, 1), cpu => {
			TValue b = cpu.Pop();
			TValue a = cpu.Pop();
			if (b.ptr == null) {
				a.x += (int)b;
				cpu.Push(a);
			} else if (a.ptr is TPointerBlob
				&& b.ptr is TPointerBlob)
			{
				cpu.Push(StringToBlob(
					a.ToString() + b.ToString()));
			} else {
				throw new Exception(string.Format(
					"Cannot add '{0}' to '{1}'", b, a));
			}
		});
		AddNative("-", false, new SType(2, 1), cpu => {
			/*
			 * We can subtract two pointers, provided that
			 * they point to the same blob. Otherwise,
			 * the subtraction second operand must be an
			 * integer.
			 */
			TValue b = cpu.Pop();
			TValue a = cpu.Pop();
			TPointerBlob ap = a.ptr as TPointerBlob;
			TPointerBlob bp = b.ptr as TPointerBlob;
			if (ap != null && bp != null && ap.Blob == bp.Blob) {
				cpu.Push(new TValue(a.x - b.x));
				return;
			}
			int bx = b;
			a.x -= bx;
			cpu.Push(a);
		});
		AddNative("neg", false, new SType(1, 1), cpu => {
			int ax = cpu.Pop();
			cpu.Push(-ax);
		});
		AddNative("*", false, new SType(2, 1), cpu => {
			int bx = cpu.Pop();
			int ax = cpu.Pop();
			cpu.Push(ax * bx);
		});
		AddNative("/", false, new SType(2, 1), cpu => {
			int bx = cpu.Pop();
			int ax = cpu.Pop();
			cpu.Push(ax / bx);
		});
		AddNative("u/", false, new SType(2, 1), cpu => {
			uint bx = cpu.Pop();
			uint ax = cpu.Pop();
			cpu.Push(ax / bx);
		});
		AddNative("%", false, new SType(2, 1), cpu => {
			int bx = cpu.Pop();
			int ax = cpu.Pop();
			cpu.Push(ax % bx);
		});
		AddNative("u%", false, new SType(2, 1), cpu => {
			uint bx = cpu.Pop();
			uint ax = cpu.Pop();
			cpu.Push(ax % bx);
		});
		AddNative("<", false, new SType(2, 1), cpu => {
			int bx = cpu.Pop();
			int ax = cpu.Pop();
			cpu.Push(ax < bx);
		});
		AddNative("<=", false, new SType(2, 1), cpu => {
			int bx = cpu.Pop();
			int ax = cpu.Pop();
			cpu.Push(ax <= bx);
		});
		AddNative(">", false, new SType(2, 1), cpu => {
			int bx = cpu.Pop();
			int ax = cpu.Pop();
			cpu.Push(ax > bx);
		});
		AddNative(">=", false, new SType(2, 1), cpu => {
			int bx = cpu.Pop();
			int ax = cpu.Pop();
			cpu.Push(ax >= bx);
		});
		AddNative("=", false, new SType(2, 1), cpu => {
			TValue b = cpu.Pop();
			TValue a = cpu.Pop();
			cpu.Push(a.Equals(b));
		});
		AddNative("<>", false, new SType(2, 1), cpu => {
			TValue b = cpu.Pop();
			TValue a = cpu.Pop();
			cpu.Push(!a.Equals(b));
		});
		AddNative("u<", false, new SType(2, 1), cpu => {
			uint bx = cpu.Pop().UInt;
			uint ax = cpu.Pop().UInt;
			cpu.Push(new TValue(ax < bx));
		});
		AddNative("u<=", false, new SType(2, 1), cpu => {
			uint bx = cpu.Pop().UInt;
			uint ax = cpu.Pop().UInt;
			cpu.Push(new TValue(ax <= bx));
		});
		AddNative("u>", false, new SType(2, 1), cpu => {
			uint bx = cpu.Pop().UInt;
			uint ax = cpu.Pop().UInt;
			cpu.Push(new TValue(ax > bx));
		});
		AddNative("u>=", false, new SType(2, 1), cpu => {
			uint bx = cpu.Pop();
			uint ax = cpu.Pop();
			cpu.Push(ax >= bx);
		});
		AddNative("and", false, new SType(2, 1), cpu => {
			uint bx = cpu.Pop();
			uint ax = cpu.Pop();
			cpu.Push(ax & bx);
		});
		AddNative("or", false, new SType(2, 1), cpu => {
			uint bx = cpu.Pop();
			uint ax = cpu.Pop();
			cpu.Push(ax | bx);
		});
		AddNative("xor", false, new SType(2, 1), cpu => {
			uint bx = cpu.Pop();
			uint ax = cpu.Pop();
			cpu.Push(ax ^ bx);
		});
		AddNative("not", false, new SType(1, 1), cpu => {
			uint ax = cpu.Pop();
			cpu.Push(~ax);
		});
		AddNative("<<", false, new SType(2, 1), cpu => {
			int count = cpu.Pop();
			if (count < 0 || count > 31) {
				throw new Exception("Invalid shift count");
			}
			uint ax = cpu.Pop();
			cpu.Push(ax << count);
		});
		AddNative(">>", false, new SType(2, 1), cpu => {
			int count = cpu.Pop();
			if (count < 0 || count > 31) {
				throw new Exception("Invalid shift count");
			}
			int ax = cpu.Pop();
			cpu.Push(ax >> count);
		});
		AddNative("u>>", false, new SType(2, 1), cpu => {
			int count = cpu.Pop();
			if (count < 0 || count > 31) {
				throw new Exception("Invalid shift count");
			}
			uint ax = cpu.Pop();
			cpu.Push(ax >> count);
		});

		AddNative(".", false, new SType(1, 0), cpu => {
			Console.Write(" {0}", cpu.Pop().ToString());
		});
		AddNative(".s", false, SType.BLANK, cpu => {
			int n = cpu.Depth;
			for (int i = n - 1; i >= 0; i --) {
				Console.Write(" {0}", cpu.Peek(i).ToString());
			}
		});
		AddNative("putc", false, new SType(1, 0), cpu => {
			Console.Write((char)cpu.Pop());
		});
		AddNative("puts", false, new SType(1, 0), cpu => {
			Console.Write("{0}", cpu.Pop().ToString());
		});
		AddNative("cr", false, SType.BLANK, cpu => {
			Console.WriteLine();
		});
		AddNative("eqstr", false, new SType(2, 1), cpu => {
			string s2 = cpu.Pop().ToString();
			string s1 = cpu.Pop().ToString();
			cpu.Push(s1 == s2);
		});
	}

	WordNative AddNative(string name, bool immediate,
		WordNative.NativeRun code)
	{
		return AddNative(name, immediate, SType.UNKNOWN, code);
	}

	WordNative AddNative(string name, bool immediate, SType stackEffect,
		WordNative.NativeRun code)
	{
		if (words.ContainsKey(name)) {
			throw new Exception(
				"Word already defined: " + name);
		}
		WordNative w = new WordNative(this, name, code);
		w.Immediate = immediate;
		w.StackEffect = stackEffect;
		words[name] = w;
		return w;
	}

	internal long NextBlobID()
	{
		return currentBlobID ++;
	}

	int NextChar()
	{
		int c = delayedChar;
		if (c >= 0) {
			delayedChar = Int32.MinValue;
		} else if (c > Int32.MinValue) {
			delayedChar = -(c + 1);
			c = '\n';
		} else {
			c = currentInput.Read();
		}
		if (c == '\r') {
			if (delayedChar >= 0) {
				c = delayedChar;
				delayedChar = Int32.MinValue;
			} else {
				c = currentInput.Read();
			}
			if (c != '\n') {
				delayedChar = c;
				c = '\n';
			}
		}
		return c;
	}

	/*
	 * Un-read the character value 'c'. That value MUST be the one
	 * that was obtained from NextChar().
	 */
	void Unread(int c)
	{
		if (c < 0) {
			return;
		}
		if (delayedChar < 0) {
			if (delayedChar != Int32.MinValue) {
				throw new Exception(
					"Already two delayed characters");
			}
			delayedChar = c;
		} else if (c != '\n') {
			throw new Exception("Cannot delay two characters");
		} else {
			delayedChar = -(delayedChar + 1);
		}
	}

	string Next()
	{
		string r = delayedToken;
		if (r != null) {
			delayedToken = null;
			return r;
		}
		tokenBuilder.Length = 0;
		int c;
		for (;;) {
			c = NextChar();
			if (c < 0) {
				return null;
			}
			if (!IsWS(c)) {
				break;
			}
		}
		if (c == '"') {
			return ParseString();
		}
		for (;;) {
			tokenBuilder.Append((char)c);
			c = NextChar();
			if (c < 0 || IsWS(c)) {
				Unread(c);
				return tokenBuilder.ToString();
			}
		}
	}

	string ParseCCode()
	{
		SType stackEffect;
		string r = ParseCCode(out stackEffect);
		if (stackEffect.IsKnown) {
			throw new Exception(
				"Stack effect forbidden in this declaration");
		}
		return r;
	}

	string ParseCCode(out SType stackEffect)
	{
		string s = ParseCCodeNF(out stackEffect);
		if (s == null) {
			throw new Exception("Error while parsing C code");
		}
		return s;
	}

	string ParseCCodeNF(out SType stackEffect)
	{
		stackEffect = SType.UNKNOWN;
		for (;;) {
			int c = NextChar();
			if (c < 0) {
				return null;
			}
			if (!IsWS(c)) {
				if (c == '(') {
					if (stackEffect.IsKnown) {
						Unread(c);
						return null;
					}
					stackEffect = ParseStackEffectNF();
					if (!stackEffect.IsKnown) {
						return null;
					}
					continue;
				} else if (c != '{') {
					Unread(c);
					return null;
				}
				break;
			}
		}
		StringBuilder sb = new StringBuilder();
		int count = 1;
		for (;;) {
			int c = NextChar();
			if (c < 0) {
				return null;
			}
			switch (c) {
			case '{':
				count ++;
				break;
			case '}':
				if (-- count == 0) {
					return sb.ToString();
				}
				break;
			}
			sb.Append((char)c);
		}
	}

	/*
	 * Parse a stack effect declaration. This method assumes that the
	 * opening parenthesis has just been read. If the parsing fails,
	 * then this method returns SType.UNKNOWN.
	 */
	SType ParseStackEffectNF()
	{
		bool seenSep = false;
		bool seenBang = false;
		int din = 0, dout = 0;
		for (;;) {
			string t = Next();
			if (t == null) {
				return SType.UNKNOWN;
			}
			if (t == "--") {
				if (seenSep) {
					return SType.UNKNOWN;
				}
				seenSep = true;
			} else if (t == ")") {
				if (seenSep) {
					if (seenBang && dout == 1) {
						dout = -1;
					}
					return new SType(din, dout);
				} else {
					return SType.UNKNOWN;
				}
			} else {
				if (seenSep) {
					if (dout == 0 && t == "!") {
						seenBang = true;
					}
					dout ++;
				} else {
					din ++;
				}
			}
		}
	}

	string ParseString()
	{
		StringBuilder sb = new StringBuilder();
		sb.Append('"');
		bool lcwb = false;
		int hexNum = 0;
		int acc = 0;
		for (;;) {
			int c = NextChar();
			if (c < 0) {
				throw new Exception(
					"Unfinished literal string");
			}
			if (hexNum > 0) {
				int d = HexVal(c);
				if (d < 0) {
					throw new Exception(String.Format(
						"not an hex digit: U+{0:X4}",
						c));
				}
				acc = (acc << 4) + d;
				if (-- hexNum == 0) {
					sb.Append((char)acc);
					acc = 0;
				}
			} else if (lcwb) {
				lcwb = false;
				switch (c) {
				case '\n': SkipNL(); break;
				case 'x':
					hexNum = 2;
					break;
				case 'u':
					hexNum = 4;
					break;
				default:
					sb.Append(SingleCharEscape(c));
					break;
				}
			} else {
				switch (c) {
				case '"':
					return sb.ToString();
				case '\\':
					lcwb = true;
					break;
				default:
					sb.Append((char)c);
					break;
				}
			}
		}
	}

	static char SingleCharEscape(int c)
	{
		switch (c) {
		case 'n': return '\n';
		case 'r': return '\r';
		case 't': return '\t';
		case 's': return ' ';
		default:
			return (char)c;
		}
	}

	/*
	 * A backslash+newline sequence occurred in a literal string; we
	 * check and consume the newline escape sequence (whitespace at
	 * start of next line, then a double-quote character).
	 */
	void SkipNL()
	{
		for (;;) {
			int c = NextChar();
			if (c < 0) {
				throw new Exception("EOF in literal string");
			}
			if (c == '\n') {
				throw new Exception(
					"Unescaped newline in literal string");
			}
			if (IsWS(c)) {
				continue;
			}
			if (c == '"') {
				return;
			}
			throw new Exception(
				"Invalid newline escape in literal string");
		}
	}

	static char DecodeCharConst(string t)
	{
		if (t.Length == 1 && t[0] != '\\') {
			return t[0];
		}
		if (t.Length >= 2 && t[0] == '\\') {
			switch (t[1]) {
			case 'x':
				if (t.Length == 4) {
					int x = DecHex(t.Substring(2));
					if (x >= 0) {
						return (char)x;
					}
				}
				break;
			case 'u':
				if (t.Length == 6) {
					int x = DecHex(t.Substring(2));
					if (x >= 0) {
						return (char)x;
					}
				}
				break;
			default:
				if (t.Length == 2) {
					return SingleCharEscape(t[1]);
				}
				break;
			}
		}
		throw new Exception("Invalid literal char: `" + t);
	}

	static int DecHex(string s)
	{
		int acc = 0;
		foreach (char c in s) {
			int d = HexVal(c);
			if (d < 0) {
				return -1;
			}
			acc = (acc << 4) + d;
		}
		return acc;
	}

	static int HexVal(int c)
	{
		if (c >= '0' && c <= '9') {
			return c - '0';
		} else if (c >= 'A' && c <= 'F') {
			return c - ('A' - 10);
		} else if (c >= 'a' && c <= 'f') {
			return c - ('a' - 10);
		} else {
			return -1;
		}
	}

	string ReadTerm(int ct)
	{
		StringBuilder sb = new StringBuilder();
		for (;;) {
			int c = NextChar();
			if (c < 0) {
				throw new Exception(String.Format(
					"EOF reached before U+{0:X4}", ct));
			}
			if (c == ct) {
				return sb.ToString();
			}
			sb.Append((char)c);
		}
	}

	static bool IsWS(int c)
	{
		return c <= 32;
	}

	void ProcessInput(TextReader tr)
	{
		this.currentInput = tr;
		delayedChar = -1;
		Word w = new WordNative(this, "toplevel",
			xcpu => { CompileStep(xcpu); });
		CPU cpu = new CPU();
		Opcode[] code = new Opcode[] {
			new OpcodeCall(w),
			new OpcodeJumpUncond(-2)
		};
		quitRunLoop = false;
		cpu.Enter(code, 0);
		for (;;) {
			if (quitRunLoop) {
				break;
			}
			Opcode op = cpu.ipBuf[cpu.ipOff ++];
			op.Run(cpu);
		}
	}

	void CompileStep(CPU cpu)
	{
		string tt = Next();
		if (tt == null) {
			if (compiling) {
				throw new Exception("EOF while compiling");
			}
			quitRunLoop = true;
			return;
		}
		TValue v;
		bool isVal = TryParseLiteral(tt, out v);
		Word w = LookupNF(tt);
		if (isVal && w != null) {
			throw new Exception(String.Format(
				"Ambiguous: both defined word and literal: {0}",
				tt));
		}
		if (compiling) {
			if (isVal) {
				wordBuilder.Literal(v);
			} else if (w != null) {
				if (w.Immediate) {
					w.Run(cpu);
				} else {
					wordBuilder.CallExt(w);
				}
			} else {
				wordBuilder.Call(tt);
			}
		} else {
			if (isVal) {
				cpu.Push(v);
			} else if (w != null) {
				w.Run(cpu);
			} else {
				throw new Exception(String.Format(
					"Unknown word: '{0}'", tt));
			}
		}
	}

	string GetCCode(string name)
	{
		string ccode;
		allCCode.TryGetValue(name, out ccode);
		return ccode;
	}

	void Generate(string outBase, string coreRun,
		params string[] entryPoints)
	{
		/*
		 * Gather all words that are part of the generated
		 * code. This is done by exploring references
		 * transitively. All such words are thus implicitly
		 * resolved.
		 */
		IDictionary<string, Word> wordSet =
			new SortedDictionary<string, Word>(
				StringComparer.Ordinal);
		Queue<Word> tx = new Queue<Word>();
		foreach (string ep in entryPoints) {
			if (wordSet.ContainsKey(ep)) {
				continue;
			}
			Word w = Lookup(ep);
			wordSet[w.Name] = w;
			tx.Enqueue(w);
		}
		while (tx.Count > 0) {
			Word w = tx.Dequeue();
			foreach (Word w2 in w.GetReferences()) {
				if (wordSet.ContainsKey(w2.Name)) {
					continue;
				}
				wordSet[w2.Name] = w2;
				tx.Enqueue(w2);
			}
		}

		/*
		 * Do flow analysis.
		 */
		if (enableFlowAnalysis) {
			foreach (string ep in entryPoints) {
				Word w = wordSet[ep];
				w.AnalyseFlow();
				Console.WriteLine("{0}: ds={1} rs={2}",
					ep, w.MaxDataStack, w.MaxReturnStack);
				if (w.MaxDataStack > dsLimit) {
					throw new Exception("'" + ep
						+ "' exceeds data stack limit");
				}
				if (w.MaxReturnStack > rsLimit) {
					throw new Exception("'" + ep
						+ "' exceeds return stack"
						+ " limit");
				}
			}
		}

		/*
		 * Gather referenced data areas and compute their
		 * addresses in the generated data block. The address
		 * 0 in the data block is unaffected so that no
		 * valid runtime pointer is equal to null.
		 */
		IDictionary<long, ConstData> blocks =
			new SortedDictionary<long, ConstData>();
		foreach (Word w in wordSet.Values) {
			foreach (ConstData cd in w.GetDataBlocks()) {
				blocks[cd.ID] = cd;
			}
		}
		int dataLen = 1;
		foreach (ConstData cd in blocks.Values) {
			cd.Address = dataLen;
			dataLen += cd.Length;
		}

		/*
		 * Generated code is a sequence of "slot numbers", each
		 * referencing either a piece of explicit C code, or an
		 * entry in the table of interpreted words.
		 *
		 * Opcodes other than "call" get the slots 0 to 6:
		 *
		 *   0   ret           no argument
		 *   1   const         signed value
		 *   2   get local     local number
		 *   3   put local     local number
		 *   4   jump          signed offset
		 *   5   jump if       signed offset
		 *   6   jump if not   signed offset
		 *
		 * The argument, if any, is in "7E" format: the value is
		 * encoded in 7-bit chunk, with big-endian signed
		 * convention. Each 7-bit chunk is encoded over one byte;
		 * the upper bit is 1 for all chunks except the last one.
		 *
		 * Words with explicit C code get the slot numbers
		 * immediately after 6. Interpreted words come afterwards.
		 */
		IDictionary<string, int> slots = new Dictionary<string, int>();
		int curSlot = 7;

		/*
		 * Get explicit C code for words which have such code.
		 * We use string equality on C code so that words with
		 * identical implementations get merged.
		 *
		 * We also check that words with no explicit C code are
		 * interpreted.
		 */
		IDictionary<string, int> ccodeUni =
			new Dictionary<string, int>();
		IDictionary<int, string> ccodeNames =
			new Dictionary<int, string>();
		foreach (Word w in wordSet.Values) {
			string ccode = GetCCode(w.Name);
			if (ccode == null) {
				if (w is WordNative) {
					throw new Exception(String.Format(
						"No C code for native '{0}'",
						w.Name));
				}
				continue;
			}
			int sn;
			if (ccodeUni.ContainsKey(ccode)) {
				sn = ccodeUni[ccode];
				ccodeNames[sn] += " " + EscapeCComment(w.Name);
			} else {
				sn = curSlot ++;
				ccodeUni[ccode] = sn;
				ccodeNames[sn] = EscapeCComment(w.Name);
			}
			slots[w.Name] = sn;
			w.Slot = sn;
		}

		/*
		 * Assign slot values to all remaining words; we know they
		 * are all interpreted.
		 */
		int slotInterpreted = curSlot;
		foreach (Word w in wordSet.Values) {
			if (GetCCode(w.Name) != null) {
				continue;
			}
			int sn = curSlot ++;
			slots[w.Name] = sn;
			w.Slot = sn;
		}
		int numInterpreted = curSlot - slotInterpreted;

		/*
		 * Verify that all entry points are interpreted words.
		 */
		foreach (string ep in entryPoints) {
			if (GetCCode(ep) != null) {
				throw new Exception(
					"Non-interpreted entry point");
			}
		}

		/*
		 * Compute the code block. Each word (without any C code)
		 * yields some CodeElement instances.
		 */
		List<CodeElement> gcodeList = new List<CodeElement>();
		CodeElement[] interpretedEntry =
			new CodeElement[numInterpreted];
		foreach (Word w in wordSet.Values) {
			if (GetCCode(w.Name) != null) {
				continue;
			}
			int n = gcodeList.Count;
			w.GenerateCodeElements(gcodeList);
			interpretedEntry[w.Slot - slotInterpreted] =
				gcodeList[n];
		}
		CodeElement[] gcode = gcodeList.ToArray();

		/*
		 * If there are less than 256 words in total (C +
		 * interpreted) then we can use "one-byte code" which is
		 * more compact when the number of words is in the
		 * 128..255 range.
		 */
		bool oneByteCode;
		if (slotInterpreted + numInterpreted >= 256) {
			Console.WriteLine("WARNING: more than 255 words");
			oneByteCode = false;
		} else {
			oneByteCode = true;
		}

		/*
		 * Compute all addresses and offsets. This loops until
		 * the addresses stabilize.
		 */
		int totalLen = -1;
		int[] gcodeLen = new int[gcode.Length];
		for (;;) {
			for (int i = 0; i < gcode.Length; i ++) {
				gcodeLen[i] = gcode[i].GetLength(oneByteCode);
			}
			int off = 0;
			for (int i = 0; i < gcode.Length; i ++) {
				gcode[i].Address = off;
				gcode[i].LastLength = gcodeLen[i];
				off += gcodeLen[i];
			}
			if (off == totalLen) {
				break;
			}
			totalLen = off;
		}

		/*
		 * Produce output file.
		 */
		using (TextWriter tw = File.CreateText(outBase + ".c")) {
			tw.NewLine = "\n";

			tw.WriteLine("{0}",
@"/* Automatically generated code; do not modify directly. */

#include <stddef.h>
#include <stdint.h>

typedef struct {
	uint32_t *dp;
	uint32_t *rp;
	const unsigned char *ip;
} t0_context;

static uint32_t
t0_parse7E_unsigned(const unsigned char **p)
{
	uint32_t x;

	x = 0;
	for (;;) {
		unsigned y;

		y = *(*p) ++;
		x = (x << 7) | (uint32_t)(y & 0x7F);
		if (y < 0x80) {
			return x;
		}
	}
}

static int32_t
t0_parse7E_signed(const unsigned char **p)
{
	int neg;
	uint32_t x;

	neg = ((**p) >> 6) & 1;
	x = (uint32_t)-neg;
	for (;;) {
		unsigned y;

		y = *(*p) ++;
		x = (x << 7) | (uint32_t)(y & 0x7F);
		if (y < 0x80) {
			if (neg) {
				return -(int32_t)~x - 1;
			} else {
				return (int32_t)x;
			}
		}
	}
}

#define T0_VBYTE(x, n)   (unsigned char)((((uint32_t)(x) >> (n)) & 0x7F) | 0x80)
#define T0_FBYTE(x, n)   (unsigned char)(((uint32_t)(x) >> (n)) & 0x7F)
#define T0_SBYTE(x)      (unsigned char)((((uint32_t)(x) >> 28) + 0xF8) ^ 0xF8)
#define T0_INT1(x)       T0_FBYTE(x, 0)
#define T0_INT2(x)       T0_VBYTE(x, 7), T0_FBYTE(x, 0)
#define T0_INT3(x)       T0_VBYTE(x, 14), T0_VBYTE(x, 7), T0_FBYTE(x, 0)
#define T0_INT4(x)       T0_VBYTE(x, 21), T0_VBYTE(x, 14), T0_VBYTE(x, 7), T0_FBYTE(x, 0)
#define T0_INT5(x)       T0_SBYTE(x), T0_VBYTE(x, 21), T0_VBYTE(x, 14), T0_VBYTE(x, 7), T0_FBYTE(x, 0)

/* static const unsigned char t0_datablock[]; */
");

			/*
			 * Add declarations (not definitions) for the
			 * entry point initialisation functions, and the
			 * runner.
			 */
			tw.WriteLine();
			foreach (string ep in entryPoints) {
				tw.WriteLine("void {0}_init_{1}(void *t0ctx);",
					coreRun, ep);
			}
			tw.WriteLine();
			tw.WriteLine("void {0}_run(void *t0ctx);", coreRun);

			/*
			 * Add preamble elements here. They may be needed
			 * for evaluating constant expressions in the
			 * code block.
			 */
			foreach (string pp in extraCode) {
				tw.WriteLine();
				tw.WriteLine("{0}", pp);
			}

			BlobWriter bw;
			tw.WriteLine();
			tw.Write("static const unsigned char"
				+ " t0_datablock[] = {");
			bw = new BlobWriter(tw, 78, 1);
			bw.Append((byte)0);
			foreach (ConstData cd in blocks.Values) {
				cd.Encode(bw);
			}
			tw.WriteLine();
			tw.WriteLine("};");

			tw.WriteLine();
			tw.Write("static const unsigned char"
				+ " t0_codeblock[] = {");
			bw = new BlobWriter(tw, 78, 1);
			foreach (CodeElement ce in gcode) {
				ce.Encode(bw, oneByteCode);
			}
			tw.WriteLine();
			tw.WriteLine("};");

			tw.WriteLine();
			tw.Write("static const uint16_t t0_caddr[] = {");
			for (int i = 0; i < interpretedEntry.Length; i ++) {
				if (i != 0) {
					tw.Write(',');
				}
				tw.WriteLine();
				tw.Write("\t{0}", interpretedEntry[i].Address);
			}
			tw.WriteLine();
			tw.WriteLine("};");

			tw.WriteLine();
			tw.WriteLine("#define T0_INTERPRETED   {0}",
				slotInterpreted);
			tw.WriteLine();
			tw.WriteLine("{0}",
@"#define T0_ENTER(ip, rp, slot)   do { \
		const unsigned char *t0_newip; \
		uint32_t t0_lnum; \
		t0_newip = &t0_codeblock[t0_caddr[(slot) - T0_INTERPRETED]]; \
		t0_lnum = t0_parse7E_unsigned(&t0_newip); \
		(rp) += t0_lnum; \
		*((rp) ++) = (uint32_t)((ip) - &t0_codeblock[0]) + (t0_lnum << 16); \
		(ip) = t0_newip; \
	} while (0)");
			tw.WriteLine();
			tw.WriteLine("{0}",
@"#define T0_DEFENTRY(name, slot) \
void \
name(void *ctx) \
{ \
	t0_context *t0ctx = ctx; \
	t0ctx->ip = &t0_codeblock[0]; \
	T0_ENTER(t0ctx->ip, t0ctx->rp, slot); \
}");

			tw.WriteLine();
			foreach (string ep in entryPoints) {
				tw.WriteLine("T0_DEFENTRY({0}, {1})",
					coreRun + "_init_" + ep,
					wordSet[ep].Slot);
			}
			tw.WriteLine();
			if (oneByteCode) {
				tw.WriteLine("{0}",
@"#define T0_NEXT(t0ipp)   (*(*(t0ipp)) ++)");
			} else {
				tw.WriteLine("{0}",
@"#define T0_NEXT(t0ipp)   t0_parse7E_unsigned(t0ipp)");
			}
			tw.WriteLine();
			tw.WriteLine("void");
			tw.WriteLine("{0}_run(void *t0ctx)", coreRun);
			tw.WriteLine("{0}",
@"{
	uint32_t *dp, *rp;
	const unsigned char *ip;

#define T0_LOCAL(x)    (*(rp - 2 - (x)))
#define T0_POP()       (*-- dp)
#define T0_POPi()      (*(int32_t *)(-- dp))
#define T0_PEEK(x)     (*(dp - 1 - (x)))
#define T0_PEEKi(x)    (*(int32_t *)(dp - 1 - (x)))
#define T0_PUSH(v)     do { *dp = (v); dp ++; } while (0)
#define T0_PUSHi(v)    do { *(int32_t *)dp = (v); dp ++; } while (0)
#define T0_RPOP()      (*-- rp)
#define T0_RPOPi()     (*(int32_t *)(-- rp))
#define T0_RPUSH(v)    do { *rp = (v); rp ++; } while (0)
#define T0_RPUSHi(v)   do { *(int32_t *)rp = (v); rp ++; } while (0)
#define T0_ROLL(x)     do { \
	size_t t0len = (size_t)(x); \
	uint32_t t0tmp = *(dp - 1 - t0len); \
	memmove(dp - t0len - 1, dp - t0len, t0len * sizeof *dp); \
	*(dp - 1) = t0tmp; \
} while (0)
#define T0_SWAP()      do { \
	uint32_t t0tmp = *(dp - 2); \
	*(dp - 2) = *(dp - 1); \
	*(dp - 1) = t0tmp; \
} while (0)
#define T0_ROT()       do { \
	uint32_t t0tmp = *(dp - 3); \
	*(dp - 3) = *(dp - 2); \
	*(dp - 2) = *(dp - 1); \
	*(dp - 1) = t0tmp; \
} while (0)
#define T0_NROT()       do { \
	uint32_t t0tmp = *(dp - 1); \
	*(dp - 1) = *(dp - 2); \
	*(dp - 2) = *(dp - 3); \
	*(dp - 3) = t0tmp; \
} while (0)
#define T0_PICK(x)      do { \
	uint32_t t0depth = (x); \
	T0_PUSH(T0_PEEK(t0depth)); \
} while (0)
#define T0_CO()         do { \
	goto t0_exit; \
} while (0)
#define T0_RET()        goto t0_next

	dp = ((t0_context *)t0ctx)->dp;
	rp = ((t0_context *)t0ctx)->rp;
	ip = ((t0_context *)t0ctx)->ip;
	goto t0_next;
	for (;;) {
		uint32_t t0x;

	t0_next:
		t0x = T0_NEXT(&ip);
		if (t0x < T0_INTERPRETED) {
			switch (t0x) {
				int32_t t0off;

			case 0: /* ret */
				t0x = T0_RPOP();
				rp -= (t0x >> 16);
				t0x &= 0xFFFF;
				if (t0x == 0) {
					ip = NULL;
					goto t0_exit;
				}
				ip = &t0_codeblock[t0x];
				break;
			case 1: /* literal constant */
				T0_PUSHi(t0_parse7E_signed(&ip));
				break;
			case 2: /* read local */
				T0_PUSH(T0_LOCAL(t0_parse7E_unsigned(&ip)));
				break;
			case 3: /* write local */
				T0_LOCAL(t0_parse7E_unsigned(&ip)) = T0_POP();
				break;
			case 4: /* jump */
				t0off = t0_parse7E_signed(&ip);
				ip += t0off;
				break;
			case 5: /* jump if */
				t0off = t0_parse7E_signed(&ip);
				if (T0_POP()) {
					ip += t0off;
				}
				break;
			case 6: /* jump if not */
				t0off = t0_parse7E_signed(&ip);
				if (!T0_POP()) {
					ip += t0off;
				}
				break;");

			SortedDictionary<int, string> nccode =
				new SortedDictionary<int, string>();
			foreach (string k in ccodeUni.Keys) {
				nccode[ccodeUni[k]] = k;
			}
			foreach (int sn in nccode.Keys) {
				tw.WriteLine(
@"			case {0}: {{
				/* {1} */
{2}
				}}
				break;", sn, ccodeNames[sn], nccode[sn]);
			}

			tw.WriteLine(
@"			}

		} else {
			T0_ENTER(ip, rp, t0x);
		}
	}
t0_exit:
	((t0_context *)t0ctx)->dp = dp;
	((t0_context *)t0ctx)->rp = rp;
	((t0_context *)t0ctx)->ip = ip;
}");

			/*
			 * Add the "postamblr" elements here. These are
			 * elements that may need access to the data
			 * block or code block, so they must occur after
			 * their definition.
			 */
			foreach (string pp in extraCodeDefer) {
				tw.WriteLine();
				tw.WriteLine("{0}", pp);
			}
		}

		int codeLen = 0;
		foreach (CodeElement ce in gcode) {
			codeLen += ce.GetLength(oneByteCode);
		}
		int dataBlockLen = 0;
		foreach (ConstData cd in blocks.Values) {
			dataBlockLen += cd.Length;
		}

		/*
		 * Write some statistics on produced code.
		 */
		Console.WriteLine("code length: {0,6} byte(s)", codeLen);
		Console.WriteLine("data length: {0,6} byte(s)", dataLen);
		Console.WriteLine("total words: {0} (interpreted: {1})",
			slotInterpreted + numInterpreted, numInterpreted);
	}

	internal Word Lookup(string name)
	{
		Word w = LookupNF(name);
		if (w != null) {
			return w;
		}
		throw new Exception(String.Format("No such word: '{0}'", name));
	}

	internal Word LookupNF(string name)
	{
		Word w;
		words.TryGetValue(name, out w);
		return w;
	}

	internal TValue StringToBlob(string s)
	{
		return new TValue(0, new TPointerBlob(this, s));
	}

	internal bool TryParseLiteral(string tt, out TValue tv)
	{
		tv = new TValue(0);
		if (tt.StartsWith("\"")) {
			tv = StringToBlob(tt.Substring(1));
			return true;
		}
		if (tt.StartsWith("`")) {
			tv = DecodeCharConst(tt.Substring(1));
			return true;
		}
		bool neg = false;
		if (tt.StartsWith("-")) {
			neg = true;
			tt = tt.Substring(1);
		} else if (tt.StartsWith("+")) {
			tt = tt.Substring(1);
		}
		uint radix = 10;
		if (tt.StartsWith("0x") || tt.StartsWith("0X")) {
			radix = 16;
			tt = tt.Substring(2);
		} else if (tt.StartsWith("0b") || tt.StartsWith("0B")) {
			radix = 2;
			tt = tt.Substring(2);
		}
		if (tt.Length == 0) {
			return false;
		}
		uint acc = 0;
		bool overflow = false;
		uint maxV = uint.MaxValue / radix;
		foreach (char c in tt) {
			int d = HexVal(c);
			if (d < 0 || d >= radix) {
				return false;
			}
			if (acc > maxV) {
				overflow = true;
			}
			acc *= radix;
			if ((uint)d > uint.MaxValue - acc) {
				overflow = true;
			}
			acc += (uint)d;
		}
		int x = (int)acc;
		if (neg) {
			if (acc > (uint)0x80000000) {
				overflow = true;
			}
			x = -x;
		}
		if (overflow) {
			throw new Exception(
				"invalid literal integer (overflow)");
		}
		tv = x;
		return true;
	}

	int ParseInteger(string tt)
	{
		TValue tv;
		if (!TryParseLiteral(tt, out tv)) {
			throw new Exception("not an integer: " + ToString());
		}
		return (int)tv;
	}

	void CheckCompiling()
	{
		if (!compiling) {
			throw new Exception("Not in compilation mode");
		}
	}

	static string EscapeCComment(string s)
	{
		StringBuilder sb = new StringBuilder();
		foreach (char c in s) {
			if (c >= 33 && c <= 126 && c != '%') {
				sb.Append(c);
			} else if (c < 0x100) {
				sb.AppendFormat("%{0:X2}", (int)c);
			} else if (c < 0x800) {
				sb.AppendFormat("%{0:X2}%{0:X2}",
					((int)c >> 6) | 0xC0,
					((int)c & 0x3F) | 0x80);
			} else {
				sb.AppendFormat("%{0:X2}%{0:X2}%{0:X2}",
					((int)c >> 12) | 0xE0,
					(((int)c >> 6) & 0x3F) | 0x80,
					((int)c & 0x3F) | 0x80);
			}
		}
		return sb.ToString().Replace("*/", "%2A/");
	}
}