1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
: \ `\n parse drop ; immediate
\ This file defines the core non-native functions (mainly used for
\ parsing words, i.e. not part of the generated output). The line above
\ defines the syntax for comments.
\ Define parenthesis comments.
\ : ( `) parse drop ; immediate
: else postpone ahead 1 cs-roll postpone then ; immediate
: while postpone if 1 cs-roll ; immediate
: repeat postpone again postpone then ; immediate
: ['] ' ; immediate
: [compile] compile ; immediate
: 2drop drop drop ;
: dup2 over over ;
\ Local variables are defined with the native word '(local)'. We define
\ a helper construction that mimics what is found in Apple's Open Firmware
\ implementation. The syntax is: { a b ... ; c d ... }
\ I.e. there is an opening brace, then some names. Names appearing before
\ the semicolon are locals that are both defined and then filled with the
\ values on stack (in stack order: { a b } fills 'b' with the top-of-stack,
\ and 'a' with the value immediately below). Names appearing after the
\ semicolon are not initialized.
: __deflocal ( from_stack name -- )
dup (local) swap if
compile-local-write
else
drop
then ;
: __deflocals ( from_stack -- )
next-word
dup "}" eqstr if
2drop ret
then
dup ";" eqstr if
2drop 0 __deflocals ret
then
over __deflocals
__deflocal ;
: {
-1 __deflocals ; immediate
\ Data building words.
: data:
new-data-block next-word define-data-word ;
: hexb|
0 0 { acc z }
begin
char
dup `| = if
z if "Truncated hexadecimal byte" puts cr exitvm then
ret
then
dup 0x20 > if
hexval
z if acc 4 << + data-add8 else >acc then
z not >z
then
again ;
\ Convert hexadecimal character to number. Complain loudly if conversion
\ is not possible.
: hexval ( char -- x )
hexval-nf dup 0 < if "Not an hex digit: " puts . cr exitvm then ;
\ Convert hexadecimal character to number. If not an hexadecimal digit,
\ return -1.
: hexval-nf ( char -- x )
dup dup `0 >= swap `9 <= and if `0 - ret then
dup dup `A >= swap `F <= and if `A - 10 + ret then
dup dup `a >= swap `f <= and if `a - 10 + ret then
drop -1 ;
\ Convert decimal character to number. Complain loudly if conversion
\ is not possible.
: decval ( char -- x )
decval-nf dup 0 < if "Not a decimal digit: " puts . cr exitvm then ;
\ Convert decimal character to number. If not a decimal digit,
\ return -1.
: decval-nf ( char -- x )
dup dup `0 >= swap `9 <= and if `0 - ret then
drop -1 ;
\ Commonly used shorthands.
: 1+ 1 + ;
: 2+ 2 + ;
: 1- 1 - ;
: 2- 2 - ;
: 0= 0 = ;
: 0<> 0 <> ;
: 0< 0 < ;
: 0> 0 > ;
\ Get a 16-bit value from the constant data block. This uses big-endian
\ encoding.
: data-get16 ( addr -- x )
dup data-get8 8 << swap 1+ data-get8 + ;
\ The case..endcase construction is the equivalent of 'switch' is C.
\ Usage:
\ case
\ E1 of C1 endof
\ E2 of C2 endof
\ ...
\ CN
\ endcase
\
\ Upon entry, it considers the TOS (let's call it X). It will then evaluate
\ E1, which should yield a single value Y1; at that point, the X value is
\ still on the stack, just below Y1, and must remain untouched. The 'of'
\ word compares X with Y1; if they are equal, C1 is executed, and then
\ control jumps to after the 'endcase'. The X value is popped from the
\ stack immediately before evaluating C1.
\
\ If X and Y1 are not equal, flow proceeds to E2, to obtain a value Y2 to
\ compare with X. And so on.
\
\ If none of the 'of' clauses found a match, then CN is evaluated. When CN
\ is evaluated, the X value is on the TOS, and CN must either leave it on
\ the stack, or replace it with exactly one value; the 'endcase' word
\ expects (and drops) one value.
\
\ Implementation: this is mostly copied from ANS Forth specification,
\ although simplified a bit because we know that our control-flow stack
\ is independent of the data stack. During compilation, the number of
\ clauses is maintained on the stack; each of..endof clause really is
\ an 'if..else' that must be terminated with a matching 'then' in 'endcase'.
: case 0 ; immediate
: of 1+ postpone over postpone = postpone if postpone drop ; immediate
: endof postpone else ; immediate
: endcase
postpone drop
begin dup while 1- postpone then repeat drop ; immediate
\ A simpler and more generic "case": there is no management for a value
\ on the stack, and each test is supposed to come up with its own boolean
\ value.
: choice 0 ; immediate
: uf 1+ postpone if ; immediate
: ufnot 1+ postpone ifnot ; immediate
: enduf postpone else ; immediate
: endchoice begin dup while 1- postpone then repeat drop ; immediate
\ C implementations for native words that can be used in generated code.
add-cc: co { T0_CO(); }
add-cc: execute { T0_ENTER(ip, rp, T0_POP()); }
add-cc: drop { (void)T0_POP(); }
add-cc: dup { T0_PUSH(T0_PEEK(0)); }
add-cc: swap { T0_SWAP(); }
add-cc: over { T0_PUSH(T0_PEEK(1)); }
add-cc: rot { T0_ROT(); }
add-cc: -rot { T0_NROT(); }
add-cc: roll { T0_ROLL(T0_POP()); }
add-cc: pick { T0_PICK(T0_POP()); }
add-cc: + {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(a + b);
}
add-cc: - {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(a - b);
}
add-cc: neg {
uint32_t a = T0_POP();
T0_PUSH(-a);
}
add-cc: * {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(a * b);
}
add-cc: / {
int32_t b = T0_POPi();
int32_t a = T0_POPi();
T0_PUSHi(a / b);
}
add-cc: u/ {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(a / b);
}
add-cc: % {
int32_t b = T0_POPi();
int32_t a = T0_POPi();
T0_PUSHi(a % b);
}
add-cc: u% {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(a % b);
}
add-cc: < {
int32_t b = T0_POPi();
int32_t a = T0_POPi();
T0_PUSH(-(uint32_t)(a < b));
}
add-cc: <= {
int32_t b = T0_POPi();
int32_t a = T0_POPi();
T0_PUSH(-(uint32_t)(a <= b));
}
add-cc: > {
int32_t b = T0_POPi();
int32_t a = T0_POPi();
T0_PUSH(-(uint32_t)(a > b));
}
add-cc: >= {
int32_t b = T0_POPi();
int32_t a = T0_POPi();
T0_PUSH(-(uint32_t)(a >= b));
}
add-cc: = {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(-(uint32_t)(a == b));
}
add-cc: <> {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(-(uint32_t)(a != b));
}
add-cc: u< {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(-(uint32_t)(a < b));
}
add-cc: u<= {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(-(uint32_t)(a <= b));
}
add-cc: u> {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(-(uint32_t)(a > b));
}
add-cc: u>= {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(-(uint32_t)(a >= b));
}
add-cc: and {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(a & b);
}
add-cc: or {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(a | b);
}
add-cc: xor {
uint32_t b = T0_POP();
uint32_t a = T0_POP();
T0_PUSH(a ^ b);
}
add-cc: not {
uint32_t a = T0_POP();
T0_PUSH(~a);
}
add-cc: << {
int c = (int)T0_POPi();
uint32_t x = T0_POP();
T0_PUSH(x << c);
}
add-cc: >> {
int c = (int)T0_POPi();
int32_t x = T0_POPi();
T0_PUSHi(x >> c);
}
add-cc: u>> {
int c = (int)T0_POPi();
uint32_t x = T0_POP();
T0_PUSH(x >> c);
}
add-cc: data-get8 {
size_t addr = T0_POP();
T0_PUSH(t0_datablock[addr]);
}
add-cc: . {
extern int printf(const char *fmt, ...);
printf(" %ld", (long)T0_POPi());
}
add-cc: putc {
extern int printf(const char *fmt, ...);
printf("%c", (char)T0_POPi());
}
add-cc: puts {
extern int printf(const char *fmt, ...);
printf("%s", &t0_datablock[T0_POPi()]);
}
add-cc: cr {
extern int printf(const char *fmt, ...);
printf("\n");
}
add-cc: eqstr {
const void *b = &t0_datablock[T0_POPi()];
const void *a = &t0_datablock[T0_POPi()];
T0_PUSH(-(int32_t)(strcmp(a, b) == 0));
}
|