1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
|
%% LyX 1.4.3 created this file. For more info, see http://www.lyx.org/.
%% Do not edit unless you really know what you are doing.
\documentclass[a4paper, english]{article}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{epstopdf}
\usepackage[usenames]{color}
\IfFileExists{url.sty}{\usepackage{url}}
{\newcommand{\url}{\texttt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
\newcommand{\noun}[1]{\textsc{#1}}
%% Bold symbol macro for standard LaTeX users
\providecommand{\boldsymbol}[1]{\mbox{\boldmath $#1$}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Textclass specific LaTeX commands.
\newenvironment{lyxlist}[1]
{\begin{list}{}
{\settowidth{\labelwidth}{#1}
\setlength{\leftmargin}{\labelwidth}
\addtolength{\leftmargin}{\labelsep}
\renewcommand{\makelabel}[1]{##1\hfil}}}
{\end{list}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
\definecolor{XMLColor}{rgb}{0.0,0.0,0.0}
\newcommand{\xml}[1]{\textcolor{XMLColor}{\texttt{#1}}}
\usepackage{babel}
\makeatother
\begin{document}
\title{\textbf{The serially-sampled coalescent}}
\date{July 12, 2007}
\author{\textsc{Alexei J. Drummond}}
\maketitle
\section{A simple example}
Consider the situation in which there are 4 individuals sampled, two in the present (A, B) and two sampled $\tau$ time units in the past. Going back in time, the probability that there is no coalescent between A and B before time $\tau$ is:
\begin{equation}
p_{nc} = e^{-\tau/\theta}
\end{equation}
And consequently the probability of coalescence is:
\begin{equation}
p_{c} = 1 - p_{nc}
\end{equation}
If there is a coalescence before time $\tau$ then the tree must be one of the following topologies: ((A,B),(C,D)), (((A,B),C),D), (((A,B),D),C).
Now consider the topology ((A,B),(C,D)). Conditional on coalescence of (A,B) before time $\tau$ it has a probability of $\frac{1}{3}$. However if there is no coalescence before time $\tau$ it has it normal coalescent probability of $\frac{1}{9}$ (being a symmetrical tree shape). This gives a total probability for this tree shape of:
\begin{equation}
p_{((A,B),(C,D))} = \frac{p_c}{3} + \frac{p_{nc}}{9}
\end{equation}
Likewise the probability of topologies (((A,B),C),D) and (((A,B),D),C) can be calculated as:
\begin{equation}
p_{(((A,B),C),D)} = \frac{p_c}{3} + \frac{p_{nc}}{18}
\end{equation}
\begin{equation}
p_{(((A,B),D),C)} = \frac{p_c}{3} + \frac{p_{nc}}{18}
\end{equation}
The probability of the two remaining symmetrical trees are:
\begin{equation}
p_{((A,C),(B,D))} = \frac{p_{nc}}{9}
\end{equation}
\begin{equation}
p_{((A,D),(B,C))} = \frac{p_{nc}}{9}
\end{equation}
The probability of each of the remaining asymmetric trees is:
\begin{equation}
\frac{p_{nc}}{18}
\end{equation}
Taking $\tau/\theta = 0.5$ then $p_{nc} = 0.607$ and $p_c = 0.393$ giving a probability of ((A,B),(C,D)) of:
\begin{equation}
p_{((A,B),(C,D))} = 0.199
\end{equation}
the probability of (((A,B),C),D) is:
\begin{equation}
p_{(((A,B),C),D)} = 0.165
\end{equation}
the probability of ((A,C),(B,D)) is:
\begin{equation}
p_{((A,C),(B,D))} = 0.0674
\end{equation}
and the probability of (((C,D),B),A) is:
\begin{equation}
p_{(((C,D),B),A)} = 0.0337
\end{equation}
Work out the rest :-) Check out examples/testCoalescent.xml to see these results from an MCMC run.
\end{document}
|