File: Node.java

package info (click to toggle)
beast2-mcmc 2.7.6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,564 kB
  • sloc: java: 98,494; xml: 28,158; sh: 1,082; perl: 527; ansic: 53; makefile: 38
file content (1031 lines) | stat: -rw-r--r-- 30,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
/*
* File Node.java
*
* Copyright (C) 2010 Remco Bouckaert remco@cs.auckland.ac.nz
*
* This file is part of BEAST2.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
*  BEAST is distributed in the hope that it will be useful,
*  but WITHOUT ANY WARRANTY; without even the implied warranty of
*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*  GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA  02110-1301  USA
*/
package beast.base.evolution.tree;


import java.util.*;

import beast.base.core.BEASTObject;
import beast.base.core.Description;
import beast.base.util.HeapSort;


@Description("Nodes in building beast.tree data structure.")
public class Node extends BEASTObject {

    /**
     * label nr of node, used mostly when this is a leaf.
     */
    protected int labelNr;

    /**
     * height of this node.
     */
    protected double height = Double.MAX_VALUE;

    /**
     * Arbitrarily labeled metadata on this node. Not currently implemented as part of state!
     */
    protected Map<String, Object> metaData = new TreeMap<>();

    /**
     * Length metadata for the edge above this node.  Not currently implemented as part of state!
     */
    protected Map<String, Object> lengthMetaData = new TreeMap<>();

    /**
     * list of children of this node *
     * Don't use m_left and m_right directly
     * Use getChildCount() and getChild(x) or getChildren() instead
     */
    protected List<Node> children = new ArrayList<>();

    /**
     * parent node in the beast.tree, null if root *
     */
    protected Node parent = null;

    /**
     * status of this node after an operation is performed on the state *
     */
    protected int isDirty = Tree.IS_CLEAN;

    /**
     * meta-data contained in square brackets in Newick *
     */
    public String metaDataString, lengthMetaDataString;

    /**
     * The Tree that this node is a part of.
     * This allows e.g. access to the State containing the Tree *
     */
    protected Tree m_tree;

    public Node() {
    }

    public Node(final String id) {
        setID(id);
        initAndValidate();
    }

    public void setTree(Tree tree) {
        m_tree = tree;
    }
    public Tree getTree() {
        return m_tree;
    }

    @Override
    public void initAndValidate() {
        // do nothing
    }

    /**
     * @return number uniquely identifying the node in the tree.
     *         This is a number between 0 and the total number of nodes in the tree
     *         Leaf nodes are number 0 to #leaf nodes -1
     *         Internal nodes are numbered  #leaf nodes  up to #nodes-1
     *         The root node is always numbered #nodes-1
     */
    public int getNr() {
        return labelNr;
    }

    public void setNr(final int labelIndex) {
        labelNr = labelIndex;
    }

    public double getHeight() {
        return height;
    }

    public double getDate() {
        return m_tree.getDate(height);
    }

    public void setHeight(final double height) {
        startEditing();
        this.height = height;
        isDirty |= Tree.IS_DIRTY;
        if (!isLeaf()) {
            getLeft().isDirty |= Tree.IS_DIRTY;
            if (getRight() != null) {
                getRight().isDirty |= Tree.IS_DIRTY;
            }
        }
    }

    /**
     * Set the node height in operators for data augmentation likelihood.
     * It only changes this node to be dirty, not any of child nodes.
     * @param height  new node height
     */
    public void setHeightDA(final double height) {
        startEditing();
        this.height = height;
        isDirty |= Tree.IS_DIRTY;
    }

    /**
     * @return length of branch between this node and its parent in the beast.tree
     */
    public final double getLength() {
        if (isRoot()) {
            return 0;
        } else {
            return getParent().getHeight() - getHeight();
        }
    }

    /**
     * methods for accessing the dirtiness state of the Node.
     * A Node is Tree.IS_DIRTY if its value (like height) has changed
     * A Node Tree.IS_if FILTHY if its parent or child has changed.
     * Otherwise the node is Tree.IS_CLEAN *
     */
    public int isDirty() {
        return isDirty;
    }

    public void makeDirty(final int dirty) {
        isDirty |= dirty;
    }

    public void makeAllDirty(final int dirty) {
        isDirty = dirty;
        if (!isLeaf()) {
            getLeft().makeAllDirty(dirty);
            if (getRight() != null) {
                getRight().makeAllDirty(dirty);
            }
        }
    }


    /**
     * @return parent node, or null if this is root *
     */
    public Node getParent() {
        return parent;
    }

    /**
     * Calls setParent(parent, true)
     *
     * @param parent the new parent to be set, must be called from within an operator.
     */
    public void setParent(final Node parent) {
        setParent(parent, true);
    }

    /**
     * Sets the parent of this node
     *
     * @param parent     the node to become parent
     * @param inOperator if true, then startEditing() is called and setting the parent will make tree "filthy"
     */
    public void setParent(final Node parent, final boolean inOperator) {
        if (inOperator) startEditing();
        if (this.parent != parent) {
        	this.parent = parent;
            if (inOperator) isDirty = Tree.IS_FILTHY;
        }
    }

     /**
     * Sets the parent of this node. No overhead, no side effects like setting dirty flags etc.
     *
     * @param parent     the node to become parent
     */
    void setParentImmediate(final Node parent) {
        this.parent = parent;
    }

    /**
     * @return unmodifiable list of children of this node
     */
    public List<Node> getChildren() {
        return Collections.unmodifiableList(children);
    }
    
    
    /**
     * @return modifiable list of children of this node
     */
    public List<Node> getChildrenMutable() {
        return children;
    }

    /**
     * get all child node under this node, if this node is leaf then list.size() = 0.
     * This returns all child nodes including this node.
     *
     * @return all child nodes including this node
     * @deprecated issue 703: name is confusing, replaced by
     * {@link #getAllChildNodesAndSelf() getAllChildNodesAndSelf}
     */
    @Deprecated
    public List<Node> getAllChildNodes() {
        return getAllChildNodesAndSelf();
    }

    // recursive
    /**
     * @deprecated issue 703: name is confusing, replaced by
     * {@link #getAllChildNodesAndSelf(List<Node>) getAllChildNodesAndSelf}
     */
    @Deprecated
    public void getAllChildNodes(final List<Node> childNodes) {
        getAllChildNodesAndSelf(childNodes);
    }

    /**
     * get all child node under this node, if this node is leaf then list.size() = 0.
     * This returns all child nodes including this node.
     *
     * @return all child nodes including this node
     */
    public List<Node> getAllChildNodesAndSelf() {
        final List<Node> childNodes = new ArrayList<>();
        if (!this.isLeaf()) getAllChildNodesAndSelf(childNodes);
        return childNodes;
    }

    // recursive
    public void getAllChildNodesAndSelf(final List<Node> childNodes) {
        childNodes.add(this);
        for (Node child : children)
            child.getAllChildNodesAndSelf(childNodes);
    }

    /**
     * get all leaf node under this node, if this node is leaf then list.size() = 0.
     *
     * @return
     */
    public List<Node> getAllLeafNodes() {
        final List<Node> leafNodes = new ArrayList<>();
        if (!this.isLeaf()) getAllLeafNodes(leafNodes);
        return leafNodes;
    }

    // recursive
    public void getAllLeafNodes(final List<Node> leafNodes) {
        if (this.isLeaf()) {
            leafNodes.add(this);
        }

        for (Node child : children)
            child.getAllLeafNodes(leafNodes);
    }

    /**
     * @return true if current node is root node *
     */
    public boolean isRoot() {
        return parent == null;
    }

    /**
     * @return true if current node is a leaf node *
     */
    public boolean isLeaf() {
        return children.size() == 0;
        //return getLeft() == null && getRight() == null;
    }

    public void removeChild(final Node child) {
        startEditing();
        children.remove(child);
    }

    /**
     * Removes all children from this node.
     *
     * @param inOperator if true then startEditing() is called. For operator uses, called removeAllChildren(true), otherwise
     *                   use set to false.
     */
    public void removeAllChildren(final boolean inOperator) {
        if (inOperator) startEditing();
        children.clear();
    }

    public void addChild(final Node child) {
        child.setParent(this);
        children.add(child);
    }

    /**
     * @return count number of nodes in beast.tree, starting with current node *
     */
    public int getNodeCount() {
        int nodes = 1;
        for (final Node child : children) {
            nodes += child.getNodeCount();
        }
        return nodes;
    }

    public int getLeafNodeCount() {
        if (isLeaf()) {
            return 1;
        }
        int nodes = 0;
        for (final Node child : children) {
            nodes += child.getLeafNodeCount();
        }
        return nodes;
    }

    public int getInternalNodeCount() {
        if (isLeaf()) {
            return 0;
        }
        int nodes = 1;
        for (final Node child : children) {
            nodes += child.getInternalNodeCount();
        }
        return nodes;
    }

    /**
     * @return beast.tree in Newick format, with length and meta data
     *         information. Unlike toNewick(), here Nodes are numbered, instead of
     *         using the node labels.
     *         If there are internal nodes with non-null IDs then their numbers are also printed.
     *         Also, all internal nodes are labelled if printInternalNodeNumbers
     *         is set true. This is useful for example when storing a State to file
     *         so that it can be restored.
     */
    public String toShortNewick(final boolean printInternalNodeNumbers) {
        final StringBuilder buf = new StringBuilder();

        if (!isLeaf()) {
            buf.append("(");
            boolean isFirst = true;
            for (Node child : getChildren()) {
                if (isFirst)
                    isFirst = false;
                else
                    buf.append(",");
                buf.append(child.toShortNewick(printInternalNodeNumbers));
            }
            buf.append(")");
        }

        if (isLeaf() || getID() != null || printInternalNodeNumbers) {
            buf.append(getNr());
        }

        buf.append(getNewickMetaData());
        buf.append(":").append(getNewickLengthMetaData()).append(getLength());
        return buf.toString();
    }

    /**
     * prints newick string where it orders by highest leaf number
     * in a clade. Print node numbers (m_iLabel) incremented by 1
     * for leaves and internal nodes with non-null IDs.
     */
    String toSortedNewick(final int[] maxNodeInClade) {
        return toSortedNewick(maxNodeInClade, false);
    }

    public String toSortedNewick(int[] maxNodeInClade, boolean printMetaData) {
        StringBuilder buf = new StringBuilder();

        if (!isLeaf()) {

            if (getChildCount() <= 2) {
                // Computationally cheap method for special case of <=2 children

                buf.append("(");
                String child1 = getChild(0).toSortedNewick(maxNodeInClade, printMetaData);
                int child1Index = maxNodeInClade[0];
                if (getChildCount() > 1) {
                    String child2 = getChild(1).toSortedNewick(maxNodeInClade, printMetaData);
                    int child2Index = maxNodeInClade[0];
                    if (child1Index > child2Index) {
                        buf.append(child2);
                        buf.append(",");
                        buf.append(child1);
                    } else {
                        buf.append(child1);
                        buf.append(",");
                        buf.append(child2);
                        maxNodeInClade[0] = child1Index;
                    }
                } else {
                    buf.append(child1);
                }
                buf.append(")");
                if (getID() != null) {
                    buf.append(labelNr+1);
                }

            } else {
                // General method for >2 children

                String[] childStrings = new String[getChildCount()];
                int[] maxNodeNrs = new int[getChildCount()];
                Integer[] indices = new Integer[getChildCount()];
                for (int i = 0; i < getChildCount(); i++) {
                    childStrings[i] = getChild(i).toSortedNewick(maxNodeInClade, printMetaData);
                    maxNodeNrs[i] = maxNodeInClade[0];
                    indices[i] = i;
                }

                Arrays.sort(indices, (i1, i2) -> {
                    if (maxNodeNrs[i1] < maxNodeNrs[i2])
                        return -1;

                    if (maxNodeNrs[i1] > maxNodeNrs[i2])
                        return 1;

                    return 0;
                });

                maxNodeInClade[0] = maxNodeNrs[maxNodeNrs.length - 1];

                buf.append("(");
                for (int i = 0; i < indices.length; i++) {
                    if (i > 0)
                        buf.append(",");

                    buf.append(childStrings[indices[i]]);
                }

                buf.append(")");

                if (getID() != null) {
                    buf.append(labelNr + 1);
                }
            }

        } else {
            maxNodeInClade[0] = labelNr;
            buf.append(labelNr + 1);
        }

        if (printMetaData) {
            buf.append(getNewickMetaData());
        }

        buf.append(":");
        if (printMetaData)
                buf.append(getNewickLengthMetaData());
        buf.append(getLength());

        return buf.toString();
    }

    @Deprecated
    public String toNewick(final List<String> labels) {
        throw new UnsupportedOperationException("Please use toNewick(). Labels will come from node.getId() or node.getNr().");
    }

    /**
     *
     * @param onlyTopology  if true, only print topology
     * @return
     */
    public String toNewick(boolean onlyTopology) {
        final StringBuilder buf = new StringBuilder();
        if (!isLeaf()) {
            buf.append("(");
            boolean isFirst = true;
            for (Node child : getChildren()) {
                if (isFirst)
                    isFirst = false;
                else
                    buf.append(",");
                buf.append(child.toNewick(onlyTopology));
            }
            buf.append(")");

            if (getID() != null)
                buf.append(getID());
        } else {
            if (getID() != null)
                buf.append(getID());
            else
                buf.append(labelNr);
        }

        if (!onlyTopology) {
            buf.append(getNewickMetaData());
            buf.append(":").append(getNewickLengthMetaData()).append(getLength());
        }
        return buf.toString();
    }


    /**
     * @return beast.tree in Newick format with taxon labels for labelled tip nodes
     * and labeled (having non-null ID) internal nodes.
     * If a tip node doesn't have an ID (taxon label) then node number (m_iLabel) is printed.
     */
    public String toNewick() {
        return toNewick(false);
    }

    public String getNewickMetaData() {
        if (metaDataString != null)
            return "[&" + metaDataString + ']';
        else
            return "";
    }

    public String getNewickLengthMetaData() {
        if (lengthMetaDataString != null)
            return "[&" + lengthMetaDataString + "]";
        else
            return "";
    }

    /**
     * @param labels
     * @return beast.tree in long Newick format, with all length and meta data
     *         information, but with leafs labelled with their names
     */
    public String toString(final List<String> labels) {
        final StringBuilder buf = new StringBuilder();

        if (isLeaf()) {
            buf.append(labels.get(labelNr));
        } else {
            buf.append("(");
            boolean isFirst = true;
            for (Node child : getChildren()) {
                if (isFirst)
                    isFirst = false;
                else
                    buf.append(",");
                buf.append(child.toString(labels));
            }
            buf.append(")");
        }

        if (isLeaf())
            buf.append(labels.get(labelNr));

        if (metaDataString != null) {
            buf.append('[');
            buf.append(metaDataString);
            buf.append(']');
        }
        buf.append(":");
        if (lengthMetaDataString != null) {
            buf.append('[');
            buf.append(lengthMetaDataString);
            buf.append(']');
        }
        buf.append(getLength());

        return buf.toString();
    }

    @Override
	public String toString() {
        return toShortNewick(true);
    }

    /**
     * sorts nodes in children according to lowest numbered label in subtree
     *
     * @return
     */
    public int sort() {

        if (isLeaf()) {
            return labelNr;
        }

        final int childCount = getChildCount();

        if (childCount == 1) return getChild(0).sort();

        final List<Integer> lowest = new ArrayList<>();
        final int[] indices = new int[childCount];

        // relies on this being a copy of children list
        final List<Node> children = new ArrayList<>(getChildren());

        for (final Node child : children) {
            lowest.add(child.sort());
        }
        HeapSort.sort(lowest, indices);
        for (int i = 0; i < childCount; i++) {
            setChild(i, children.get(indices[i]));
        }
        return lowest.get(indices[0]);
    } // sort

    /**
     * during parsing, leaf nodes are numbered 0...m_nNrOfLabels-1
     * but internal nodes are left to zero. After labeling internal
     * nodes, m_iLabel uniquely identifies a node in a beast.tree.
     *
     * @param labelIndex
     * @return
     */
    public int labelInternalNodes(int labelIndex) {
        if (isLeaf()) {
            return labelIndex;
        } else {
            labelIndex = getLeft().labelInternalNodes(labelIndex);
            if (getRight() != null) {
                labelIndex = getRight().labelInternalNodes(labelIndex);
            }
            labelNr = labelIndex++;
        }
        return labelIndex;
    } // labelInternalNodes

    /**
     * @return (deep) copy of node
     */
    public Node copy() {
        final Node node = new Node();
        node.height = height;
        node.labelNr = labelNr;
        node.metaDataString = metaDataString;
        node.lengthMetaDataString = lengthMetaDataString;
        node.metaData = new TreeMap<>(metaData);
        node.lengthMetaData = new TreeMap<>(lengthMetaData);
        node.parent = null;
        node.setID(getID());

        for (final Node child : getChildren()) {
            node.addChild(child.copy());
        }
        return node;
    } // copy

    /**
     * assign values to a tree in array representation *
     */
    public void assignTo(final Node[] nodes) {
        final Node node = nodes[getNr()];
        node.height = height;
        node.labelNr = labelNr;
        node.metaDataString = metaDataString;
        node.lengthMetaDataString = lengthMetaDataString;
        node.metaData = new TreeMap<>(metaData);
        node.lengthMetaData = new TreeMap<>(lengthMetaData);
        node.parent = null;
        node.setID(getID());
        if (getLeft() != null) {
            node.setLeft(nodes[getLeft().getNr()]);
            getLeft().assignTo(nodes);
            node.getLeft().parent = node;
            if (getRight() != null) {
                node.setRight(nodes[getRight().getNr()]);
                getRight().assignTo(nodes);
                node.getRight().parent = node;
            }
        }
    }

    /**
     * assign values from a tree in array representation *
     */
    public void assignFrom(final Node[] nodes, final Node node) {
        height = node.height;
        labelNr = node.labelNr;
        metaDataString = node.metaDataString;
        lengthMetaDataString = node.lengthMetaDataString;
        metaData = new TreeMap<>(node.metaData);
        lengthMetaData = new TreeMap<>(node.lengthMetaData);
        parent = null;
        setID(node.getID());
        if (node.getLeft() != null) {
            setLeft(nodes[node.getLeft().getNr()]);
            getLeft().assignFrom(nodes, node.getLeft());
            getLeft().parent = this;
            if (node.getRight() != null) {
                setRight(nodes[node.getRight().getNr()]);
                getRight().assignFrom(nodes, node.getRight());
                getRight().parent = this;
            }
        }
    }

    /**
     * set meta-data according to pattern.
     * Only heights are recognised, but derived classes could deal with
     * richer meta data patterns.
     */
    public void setMetaData(final String pattern, final Object value) {
        startEditing();
        if (pattern.equals(TraitSet.DATE_TRAIT) ||
        		pattern.equals(TraitSet.AGE_TRAIT) ||
                pattern.equals(TraitSet.DATE_FORWARD_TRAIT) ||
                pattern.equals(TraitSet.DATE_BACKWARD_TRAIT)) {
            height = (Double) value;
            isDirty |= Tree.IS_DIRTY;
        } else {
            metaData.put(pattern, value);
        }
    }

    /**
     * Removes metadata from the node for the given key.
     */
    public void removeMetaData(final String key) {
        metaData.remove(key);
    }

    /**
     * Add edge length metadata with given key and value.
     *
     * @param key key for metadata
     * @param value value of metadata for this edge length
     */
    public void setLengthMetaData(String key, Object value) {
        startEditing();
        lengthMetaData.put(key, value);
    }

    /**
     * Retrieve metadata with key matching pattern.  If pattern
     * happens to match either "date", "date-forward" or "date-backward",
     * return the node age instead.
     *
     * @param pattern key to retrieve.
     * @return metadata object or null of key not found.
     */
    public Object getMetaData(final String pattern) {
        if (pattern.equals(TraitSet.DATE_TRAIT) ||
        		pattern.equals(TraitSet.AGE_TRAIT) ||
                pattern.equals(TraitSet.DATE_FORWARD_TRAIT) ||
                pattern.equals(TraitSet.DATE_BACKWARD_TRAIT)) {
            return height;
        } else
            return metaData.get(pattern);
    }

    public Object getLengthMetaData(String key) {
        return lengthMetaData.get(key);
    }

    public Set<String> getMetaDataNames() {
        return metaData.keySet();
    }

    public Set<String> getLengthMetaDataNames() {
        return lengthMetaData.keySet();
    }


    /**
     * scale height of this node and all its descendants
     *
     * @param scale scale factor
     * @return degrees of freedom scaled (used for HR calculations)
     */
    public int scale(final double scale) {
        startEditing();

        int dof = 0;

        isDirty |= Tree.IS_DIRTY;
        if (!isLeaf() && !isFake()) {
            height *= scale;

            if (isRoot() || parent.getHeight() != getHeight())
                dof += 1;
        }
        if (!isLeaf()) {
            dof += getLeft().scale(scale);
            if (getRight() != null) {
                dof += getRight().scale(scale);
            }
            if (height < getLeft().height || height < getRight().height) {
                throw new IllegalArgumentException("Scale gives negative branch length");
            }
        }

        return dof;
    }

//    /**
//     * Used for sampled ancestor trees
//     * Scales this node and all its descendants (either all descendants, or only non-sampled descendants)
//     *
//     * @param scale    the scalar to multiply each scaled node age by
//     * @param scaleSNodes true if sampled nodes should be scaled as well as internal nodes, false if only non-sampled
//     *                  internal nodes should be scaled.
//     */
//    public void scale(double scale, boolean scaleSNodes) {
//        startEditing();
//        isDirty |= Tree.IS_DIRTY;
//        if (scaleSNodes || (!isLeaf() && !isFake())) {
//            height *= scale;
//        }
//        if (!isLeaf()) {
//            (getLeft()).scale(scale, scaleSNodes);
//            if (getRight() != null) {
//                (getRight()).scale(scale, scaleSNodes);
//            }
//            if (height < getLeft().height || height < getRight().height) {
//                throw new IllegalArgumentException("Scale gives negative branch length");
//            }
//        }
//    }

    protected void startEditing() {
        if (m_tree != null && m_tree.getState() != null) {
            m_tree.startEditing(null);
        }
    }

    /**
     * @return the number of children of this node.
     */
    public int getChildCount() {
        return children.size();
    }

    /**
     * This method returns the i'th child, numbering starting from 0.
     * getChild(0) returns the same node as getLeft()
     * getChild(1) returns the same node as getRight()
     *
     * This method is unprotected and will throw an ArrayOutOfBoundsException if provided an index larger than getChildCount() - 1, or smaller than 0.
     *
     * @return the i'th child of this node.
     */
    public Node getChild(final int childIndex) {
        return children.get(childIndex);
    }

    /**
     * This sets the i'th child of this node. Will pad out the children with null's if getChildCount() <= childIndex.
     */
    public void setChild(final int childIndex, final Node node) {
        while (children.size() <= childIndex) {
            children.add(null);
        }
        children.set(childIndex, node);
    }

    /**
     * This sets the zero'th (left in binary trees) child of this node.
     *
     * @param leftChild new left child
     * trees should not be assumed to be binary. One child and more than two are both valid in some models.
     */
    public void setLeft(final Node leftChild) {
        if (children.size() == 0) {
            children.add(leftChild);
        } else {
            children.set(0, leftChild);
        }
    }

    /**
     * This method returns the zero'th child (called left child in binary trees).
     * Will return null if there are no children.
     *
     * @return left child (zero'th child), or null if this node has no children.
     * trees should not be assumed to be binary. One child and more than two are both valid in some models.
     */
    public Node getLeft() {
        if (children.size() == 0) {
            return null;
        }
        return children.get(0);
    }

    /**
     * This sets the second child (index 1, called right child in binary trees). If this node had no children then the left
     * child will be set to null after this call.
     *
     * @param rightChild new right child
     * trees should not be assumed to be binary. One child and more than two are both valid in some models.
     */
    public void setRight(final Node rightChild) {
        switch (children.size()) {
            case 0:
                children.add(null);
            case 1:
                children.add(rightChild);
                break;
            default:
                children.set(1, rightChild);
                break;
        }
    }

    /**
     * This method returns the second child (index 1, called right child in binary trees).
     * Will return null if there are no children or only one child.
     *
     * @return right child (child 1), or null if this node has no children, or only one child.
     * trees should not be assumed to be binary. One child and more than two are both valid in some models.
     */
    public Node getRight() {
        if (children.size() <= 1) {
            return null;
        }
        return children.get(1);
    }

    public static Node connect(final Node left, final Node right, final double h) {
        final Node n = new Node();
        n.setHeight(h);
        n.setLeft(left);
        n.setRight(right);
        left.parent = n;
        right.parent = n;
        return n;
    }

    /**
     * @return true if this leaf actually represents a direct ancestor
     * (i.e. is on the end of a zero-length branch)
     */
    public boolean isDirectAncestor() {
        return (isLeaf() && !isRoot() && this.getParent().getHeight() == this.getHeight());
    }

    /**
     * @return true if this is a "fake" internal node (i.e. one of its children is a direct ancestor)
     */
    public boolean isFake() {
        if (this.isLeaf())
            return false;
        return ((this.getLeft()).isDirectAncestor() || (this.getRight() != null && (this.getRight()).isDirectAncestor()));
    }

    /**
     * Retrieve the (technically leaf) node whose ID matches the ID of the taxon
     * associated with this sampled ancestor.
     *
     * @return node corresponding to the sampled ancestor
     */
    public Node getDirectAncestorChild() {
        if (!this.isFake()) {
            return null;
        }
        if (this.getLeft().isDirectAncestor()) {
            return this.getLeft();
        }
        return this.getRight();
    }

    /**
     * Retrieve the true child node of this sampled ancestor.
     *
     * @return true child node
     */
    public Node getNonDirectAncestorChild(){
        if (!this.isFake()) {
            return null;
        }
        if ((this.getLeft()).isDirectAncestor()){
            return getRight();
        }
        if  ((this.getRight()).isDirectAncestor()){
            return getLeft();
        }
        return null;
    }

    public Node getFakeChild(){

        if ((this.getLeft()).isFake()){
            return getLeft();
        }
        if ((this.getRight()).isFake()){
            return getRight();
        }
        return null;
    }

	
} // class Node