1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#!/usr/bin/env python3
# Interactive glyph editor for Bedstead.
#
# This program was written by Simon Tatham in 2013 and updated by Ben
# Harris in 2024.
#
# Simon Tatham and Ben Harris make this program available under the
# CC0 Public Domain Dedication.
'''Interactive glyph editor for Bedstead.
Uses Python/Tk to display a window with a pixel grid on the left side,
where the user can click or drag to toggle pixels on and off, and on
the right, shows the output of the Bedstead smoothing algorithm
applied to that grid of pixels.
This is done by running the `bedstead` executable itself to compute
the smoothed outline, so a copy of that executable is required to use
this editor.
'''
import argparse
import os
import re
import sys
import string
import subprocess
import tkinter
gutter = 20
pixel = 32
XSIZE, YSIZE = 5, 9
LEFT, TOP = 100, 700 # for transforming coordinates returned from bedstead
class EditorGui:
def __init__(self, bedstead):
self.bedstead = bedstead
self.tkroot = tkinter.Tk()
self.canvas = tkinter.Canvas(self.tkroot,
width=2 * (XSIZE*pixel) + 3*gutter,
height=YSIZE*pixel + 2*gutter,
bg='white')
self.bitmap = [0] * YSIZE
self.oldbitmap = self.bitmap[:]
self.pixels = [[None]*XSIZE for y in range(YSIZE)]
self.polygons = []
for x in range(XSIZE+1):
self.canvas.create_line(gutter + x*pixel, gutter,
gutter + x*pixel, gutter + YSIZE*pixel)
for y in range(YSIZE+1):
self.canvas.create_line(gutter, gutter + y*pixel,
gutter + XSIZE*pixel, gutter + y*pixel)
self.canvas.bind("<Button-1>", self.click)
self.canvas.bind("<B1-Motion>", self.drag)
self.canvas.bind("<Button-2>", self.paste)
self.tkroot.bind("<Key>", self.key)
self.canvas.pack()
def getpixel(self, x, y):
assert x >= 0 and x < XSIZE and y >= 0 and y < YSIZE
bit = 1 << (XSIZE-1 - x)
return self.bitmap[y] & bit
def setpixel(self, x, y, state):
assert x >= 0 and x < XSIZE and y >= 0 and y < YSIZE
bit = 1 << (XSIZE-1 - x)
if state and not (self.bitmap[y] & bit):
self.bitmap[y] |= bit
self.pixels[y][x] = self.canvas.create_rectangle(
gutter + x*pixel, gutter + y*pixel,
gutter + (x+1)*pixel, gutter + (y+1)*pixel,
fill='black')
elif not state and (self.bitmap[y] & bit):
self.bitmap[y] &= ~bit
self.canvas.delete(self.pixels[y][x])
self.pixels[y][x] = None
def regenerate(self):
if self.oldbitmap == self.bitmap:
return
self.oldbitmap = self.bitmap[:]
for pg in self.polygons:
self.canvas.delete(pg)
self.polygons = []
data = subprocess.check_output(
[self.bedstead] + list(map(str, self.bitmap)),
universal_newlines=True)
class CharstringInterpreter:
def __init__(self):
self.paths = []
self.path = None
self.stack = []
self.cursor = [0, 0]
self.skip = False
def rmoveto(self):
self.path = []
self.paths.append(self.path)
self.rlineto()
def rlineto(self):
while len(self.stack) >= 2:
self.cursor[0] += self.stack[0]
self.cursor[1] += self.stack[1]
self.stack = self.stack[2:]
self.path.append(self.cursor[:])
def op(self, word):
try:
if not self.skip:
self.stack.append(float(word))
self.skip = False
except:
if word == "rmoveto": self.rmoveto()
elif word == "rlineto": self.rlineto()
elif word in ("hstem", "vstem"): self.stack = []
elif word in ("cntrmask", "hintmask"): self.skip = True
elif word == "endchar": pass
else:
print("unknown charstring component " + repr(word))
interp = CharstringInterpreter()
data = re.sub(r"<!--(?:[^-]|-[^-])*-->", "", data)
for word in data.split():
interp.op(word)
paths = [[[int((float(x)-LEFT)*pixel*0.01 + 2*gutter + XSIZE*pixel),
int((TOP - float(y))*pixel*0.01 + gutter)]
for x, y in path] for path in interp.paths]
# The output from 'bedstead' will be a set of disjoint paths,
# in the Postscript style (going one way around the outside of
# filled areas, and the other way around internal holes in
# those areas). Python/Tk doesn't know how to fill an
# arbitrary path in that representation, so instead we must
# convert into a set of individual Tk polygons (convex shapes
# with a single closed outline) and display them in the right
# order with the right colour.
#
# A neat way to arrange this is to compute the area enclosed
# by each polygon, essentially by integration: for each line
# segment (x0,y0)-(x1,y1), sum the y difference (y1-y0) times
# the average x value, which gives the area between that line
# segment and the corresponding segment of the x-axis. After
# we go all the way round an outline in this way, we'll have
# precisely the area enclosed by the outline, no matter how
# many times it doubles back on itself (because every piece of
# x-axis has been cancelled out by an outline going back the
# other way). Furthermore, the sign of the integral we've
# computed tells us whether the outline goes one way or the
# other around the area.
#
# So then we sort our paths into descending order of the
# absolute value of its computed area (guaranteeing that any
# path contained inside another appears after it, since it
# must enclose a strictly smaller area) and fill each one with
# a colour based on the area's sign.
#
# This strategy depends critically on 'bedstead' having given
# us sensible paths in the first place: it wouldn't handle an
# _arbitrary_ PostScript path, with loops allowed to overlap
# and intersect rather than being neatly nested.
pathswithmetadata = []
for path in paths:
area = 0
for i in range(len(path)):
x0, y0 = path[i-1]
x1, y1 = path[i]
area += (y1-y0) * (x0+x1)/2
pathswithmetadata.append([abs(area),
('black' if area<0 else 'white'),
path])
pathswithmetadata.sort(reverse=True)
for _, colour, path in pathswithmetadata:
if len(path) > 1:
args = sum(path, []) # x,y,x,y,...,x.y
pg = self.canvas.create_polygon(*args, fill=colour)
self.polygons.append(pg)
def click(self, event):
for dragstartx in gutter, 2*gutter + XSIZE*pixel:
x = (event.x - dragstartx) // pixel
y = (event.y - gutter) // pixel
if x >= 0 and x < XSIZE and y >= 0 and y < YSIZE:
self.dragstartx = dragstartx
self.dragstate = not self.getpixel(x,y)
self.setpixel(x, y, self.dragstate)
self.regenerate()
break
def paste(self, event):
s = self.tkroot.selection_get()
pat = re.compile("[0-7]+")
bitmap = []
for i in range(YSIZE):
m = pat.search(s)
if m is None:
print("Unable to interpret selection data {!r} as a "
"Bedstead glyph description".format(s))
return
bitmap.append(int(m.group(0), 8) & ((1 << XSIZE) - 1))
s = s[m.end(0):]
for y in range(YSIZE):
for x in range(XSIZE):
self.setpixel(x, y, 1 & (bitmap[y] >> (XSIZE-1 - x)))
self.regenerate()
def drag(self, event):
x = (event.x - self.dragstartx) // pixel
y = (event.y - gutter) // pixel
if 0 <= x < XSIZE and 0 <= y < YSIZE:
self.setpixel(x, y, self.dragstate)
self.regenerate()
def key(self, event):
if event.char in (' '):
bm = "".join(map(lambda n: "\\%02o" % n, self.bitmap))
print(' {"%s", U() },' % bm)
elif event.char in ('c','C'):
for y in range(YSIZE):
for x in range(XSIZE):
self.setpixel(x, y, 0)
self.regenerate()
elif event.char in ('q','Q','\x11'):
sys.exit(0)
def run(self):
tkinter.mainloop()
def main():
# By default, assume that the user ran 'make' in the bedstead
# source directory, so that the 'bedstead' executable is alongside
# the binary.
default_executable_path = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "bedstead")
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument("--bedstead", default=default_executable_path,
help="Location of the 'bedstead' executable.")
args = parser.parse_args()
editor = EditorGui(args.bedstead)
editor.run()
if __name__ == '__main__':
main()
|