File: manual_threading_test.cc

package info (click to toggle)
benchmark 1.9.5-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,820 kB
  • sloc: cpp: 14,339; python: 2,399; ansic: 38; sh: 28; makefile: 14
file content (175 lines) | stat: -rw-r--r-- 4,917 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

#include <memory>
#undef NDEBUG

#include <chrono>
#include <thread>

#include "../src/timers.h"
#include "benchmark/benchmark.h"

namespace {

const std::chrono::duration<double, std::milli> time_frame(50);
const double time_frame_in_sec(
    std::chrono::duration_cast<std::chrono::duration<double, std::ratio<1, 1>>>(
        time_frame)
        .count());

void MyBusySpinwait() {
  const auto start = benchmark::ChronoClockNow();

  while (true) {
    const auto now = benchmark::ChronoClockNow();
    const auto elapsed = now - start;

    if (std::chrono::duration<double, std::chrono::seconds::period>(elapsed) >=
        time_frame) {
      return;
    }
  }
}

int numRunThreadsCalled_ = 0;

class ManualThreadRunner : public benchmark::ThreadRunnerBase {
 public:
  explicit ManualThreadRunner(int num_threads)
      : pool(static_cast<size_t>(num_threads - 1)) {}

  void RunThreads(const std::function<void(int)>& fn) final {
    for (std::size_t ti = 0; ti < pool.size(); ++ti) {
      pool[ti] = std::thread(fn, static_cast<int>(ti + 1));
    }

    fn(0);

    for (std::thread& thread : pool) {
      thread.join();
    }

    ++numRunThreadsCalled_;
  }

 private:
  std::vector<std::thread> pool;
};

// ========================================================================= //
// --------------------------- TEST CASES BEGIN ---------------------------- //
// ========================================================================= //

// ========================================================================= //
// BM_ManualThreading
// Creation of threads is done before the start of the measurement,
// joining after the finish of the measurement.
void BM_ManualThreading(benchmark::State& state) {
  for (auto _ : state) {
    MyBusySpinwait();
    state.SetIterationTime(time_frame_in_sec);
  }
  state.counters["invtime"] =
      benchmark::Counter{1, benchmark::Counter::kIsRate};
}

}  // end namespace

BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(1);
BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(1)
    ->UseRealTime();
BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(1)
    ->UseManualTime();
BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(1)
    ->MeasureProcessCPUTime();
BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(1)
    ->MeasureProcessCPUTime()
    ->UseRealTime();
BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(1)
    ->MeasureProcessCPUTime()
    ->UseManualTime();

BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(2);
BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(2)
    ->UseRealTime();
BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(2)
    ->UseManualTime();
BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(2)
    ->MeasureProcessCPUTime();
BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(2)
    ->MeasureProcessCPUTime()
    ->UseRealTime();
BENCHMARK(BM_ManualThreading)
    ->Iterations(1)
    ->ThreadRunner([](int num_threads) {
      return std::make_unique<ManualThreadRunner>(num_threads);
    })
    ->Threads(2)
    ->MeasureProcessCPUTime()
    ->UseManualTime();

// ========================================================================= //
// ---------------------------- TEST CASES END ----------------------------- //
// ========================================================================= //

int main(int argc, char* argv[]) {
  benchmark::MaybeReenterWithoutASLR(argc, argv);
  benchmark::Initialize(&argc, argv);
  benchmark::RunSpecifiedBenchmarks();
  benchmark::Shutdown();
  assert(numRunThreadsCalled_ > 0);
}