1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
# Copyright 2017 DT42
#
# This file is part of BerryNet.
#
# BerryNet is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# BerryNet is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with BerryNet. If not, see <http://www.gnu.org/licenses/>.
"""Simple image classification server with Inception.
The server monitors image_dir and run inferences on new images added to the
directory. Every image file should come with another empty file with '.done'
suffix to signal readiness. Inference result of a image can be read from the
'.txt' file of that image after '.txt.done' is spotted.
This is an example the server expects clients to do. Note the order.
# cp cat.jpg /run/image_dir
# touch /run/image_dir/cat.jpg.done
Clients should wait for appearance of 'cat.jpg.txt.done' before getting
result from 'cat.jpg.txt'.
"""
from __future__ import print_function
import os
import sys
import time
from caffe2.proto import caffe2_pb2
import numpy as np
import skimage.io
import skimage.transform
import threading
import multiprocessing
import Queue
import signal
from watchdog.observers import Observer
from watchdog.events import PatternMatchingEventHandler
from caffe2.python import core, workspace
import urllib2
image_dir = '/run/image_dir'
image_queue = Queue.Queue()
sess = None
threads = []
def logging(*args):
print("[%08.3f]" % time.time(), ' '.join(args))
def touch(fname, times=None):
with open(fname, 'a'):
os.utime(fname, times)
def crop_center(img,cropx,cropy):
y,x,c = img.shape
startx = x//2-(cropx//2)
starty = y//2-(cropy//2)
return img[starty:starty+cropy,startx:startx+cropx]
def rescale(img, input_height, input_width):
aspect = img.shape[1]/float(img.shape[0])
if(aspect>1):
# landscape orientation - wide image
res = int(aspect * input_height)
imgScaled = skimage.transform.resize(img, (input_width, res))
if(aspect<1):
# portrait orientation - tall image
res = int(input_width/aspect)
imgScaled = skimage.transform.resize(img, (res, input_height))
if(aspect == 1):
imgScaled = skimage.transform.resize(img, (input_width, input_height))
return imgScaled
def server(labels):
"""Infinite loop serving inference requests"""
global image_queue, sess
CAFFE2_ROOT = "/caffe2"
CAFFE_MODELS = "/caffe2/caffe2/python/models"
MODEL = 'squeezenet', 'exec_net.pb', 'predict_net.pb', 'ilsvrc_2012_mean.npy', 227
codes = "https://gist.githubusercontent.com/aaronmarkham/cd3a6b6ac071eca6f7b4a6e40e6038aa/raw/9edb4038a37da6b5a44c3b5bc52e448ff09bfe5b/alexnet_codes"
logging(threading.current_thread().getName(), "is running")
CAFFE2_ROOT = os.path.expanduser(CAFFE2_ROOT)
CAFFE_MODELS = os.path.expanduser(CAFFE_MODELS)
MEAN_FILE = os.path.join(CAFFE_MODELS, MODEL[0], MODEL[3])
if not os.path.exists(MEAN_FILE):
mean = 128
else:
mean = np.load(MEAN_FILE).mean(1).mean(1)
mean = mean[:, np.newaxis, np.newaxis]
INPUT_IMAGE_SIZE = MODEL[4]
INIT_NET = os.path.join(CAFFE_MODELS, MODEL[0], MODEL[1])
PREDICT_NET = os.path.join(CAFFE_MODELS, MODEL[0], MODEL[2])
while True:
input_name = image_queue.get()
img = skimage.img_as_float(skimage.io.imread(input_name)).astype(np.float32)
img = rescale(img, INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE)
img = crop_center(img, INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE)
img = img.swapaxes(1, 2).swapaxes(0, 1)
img = img[(2, 1, 0), :, :]
img = img * 255 - mean
img = img[np.newaxis, :, :, :].astype(np.float32)
with open(INIT_NET, 'rb') as f:
init_net = f.read()
with open(PREDICT_NET, 'rb') as f:
predict_net = f.read()
p = workspace.Predictor(init_net, predict_net)
# run the net and return prediction
results = p.run([img])
results = np.asarray(results)
results = np.delete(results, 1)
index = 0
highest = 0
arr = np.empty((0,2), dtype=object)
arr[:,0] = int(10)
arr[:,1:] = float(10)
for i, r in enumerate(results):
# imagenet index begins with 1!
i=i+1
arr = np.append(arr, np.array([[i,r]]), axis=0)
if (r > highest):
highest = r
index = i
response = urllib2.urlopen(codes)
output_name = input_name+'.txt'
output_done_name = output_name+'.done'
output = open(output_name, 'w')
for line in response:
code, result = line.partition(":")[::2]
if (code.strip() == str(index)):
human_string = result.strip()[1:-2]
score = highest
print("%s (score = %.5f)" % (human_string, score), file=output)
output.close()
touch(output_done_name)
logging(input_name, " classified!")
class EventHandler(PatternMatchingEventHandler):
def process(self, event):
"""
event.event_type
'modified' | 'created' | 'moved' | 'deleted'
event.is_directory
True | False
event.src_path
path/to/observed/file
"""
# the file will be processed there
global image_queue
_msg = event.src_path
image_queue.put(_msg.rstrip('.done'))
os.remove(_msg)
logging(_msg, event.event_type)
# ignore all other types of events except 'modified'
def on_created(self, event):
self.process(event)
def main(_):
"""Called by Tensorflow"""
# Create a server thread for each CPU core
cpu_count = multiprocessing.cpu_count()
for i in xrange(cpu_count/4):
threads.append(threading.Thread(target=server,
name='Server thread %d' % i,
args=({},)))
for t in threads: t.start()
for t in threads: t.join()
if __name__ == '__main__':
global sess, threads
pid = str(os.getpid())
pidfile = "/tmp/classify_server.pid"
if os.path.isfile(pidfile):
logging("%s already exists, exiting" % pidfile)
sys.exit(1)
with open(pidfile, 'w') as f:
f.write(pid)
# workaround the issue that SIGINT cannot be received (fork a child to
# avoid blocking the main process in Thread.join()
child_pid = os.fork()
if child_pid == 0:
# child
# observer handles event in a different thread
observer = Observer()
observer.schedule(EventHandler(['*.jpg.done']), path=image_dir)
observer.start()
# Create a server thread for each CPU core
cpu_count = multiprocessing.cpu_count()
for i in xrange(cpu_count/4):
threads.append(threading.Thread(target=server,
name='Server thread %d' % i,
args=({},)))
for t in threads: t.start()
for t in threads: t.join()
else:
# parent
try:
os.wait()
except KeyboardInterrupt:
os.kill(child_pid, signal.SIGKILL)
os.unlink(pidfile)
|