1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
#!/usr/bin/env python3
#
# Copyright 2018 DT42
#
# This file is part of BerryNet.
#
# BerryNet is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# BerryNet is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with BerryNet. If not, see <http://www.gnu.org/licenses/>.
"""Simple image classification server with Inception.
The server monitors image_dir and run inferences on new images added to the
directory. Every image file should come with another empty file with '.done'
suffix to signal readiness. Inference result of a image can be read from the
'.txt' file of that image after '.txt.done' is spotted.
This is an example the server expects clients to do. Note the order.
# cp cat.jpg /run/image_dir
# touch /run/image_dir/cat.jpg.done
Clients should wait for appearance of 'cat.jpg.txt.done' before getting
result from 'cat.jpg.txt'.
"""
from __future__ import print_function
import os
import sys
import time
import numpy as np
import threading
import multiprocessing
import queue
import signal
from watchdog.observers import Observer
from watchdog.events import PatternMatchingEventHandler
import caffe
import hashlib
import urllib.request
import tempfile
import shutil
image_queue = queue.Queue()
sess = None
threads = []
image_dir = '/run/image_dir'
caffe_classifier = None
caffe_labels = []
model_meta_file = '/usr/share/doc/caffe-doc/models/bvlc_reference_caffenet/readme.md'
label_file = '/tmp/synset_words.txt'
pretrained_model = None
def logging(*args):
print("[%08.3f]" % time.time(), ' '.join(args))
def touch(fname, times=None):
with open(fname, 'a'):
os.utime(fname, times)
def load_labels(filename):
"""Read in labels, one label per line."""
return [line.rstrip() for line in open(filename)]
def read_model_meta_file(meta_file):
"""Read model meta file. The meta file is inside caffe-doc package"""
# We believe we shouldn't read this file for downloading and checking
# model. Instead we should package some model if there is free one.
url = None
sha1sum = None
filename = None
for line in open(meta_file):
l1 = line.rstrip()
if (l1.startswith("sha1:")):
sha1sum = l1[len("sha1:"):].strip()
if (l1.startswith("caffemodel_url:")):
url = l1[len("caffemodel_url:"):].strip()
if (l1.startswith("caffemodel:")):
filename = l1[len("caffemodel:"):].strip()
if ((sha1sum != None) and (url != None) and (filename != None)):
break
if ((url != None) and (sha1sum != None) and (filename != None)):
return {'url': url, 'sha1sum': sha1sum, 'filename': filename}
return None
def sha1sum(filename):
"""calculate sha1sum"""
BUF_SIZE=1024
sha1 = hashlib.sha1()
with open(filename, 'rb') as f:
while True:
data = f.read(BUF_SIZE)
if not data:
break
sha1.update(data)
return sha1.hexdigest()
def download_model():
"""Download pretrained model"""
# Downloading model from network isn't good for Debian. We need to package
# the model.
global pretrained_model
meta_data = read_model_meta_file(model_meta_file)
if (meta_data is None):
logging('Cannot load %s'%(meta_data))
return None
# FIXME: using /tmp/ will be in-secure.
pretrained_model = os.path.join('/','tmp',meta_data['filename'])
if (os.path.isfile(pretrained_model)):
sha1 = sha1sum(pretrained_model)
if (sha1 != meta_data['sha1sum']):
logging('Model %s SHA1 is not equal to %s'%(pretrained_model, meta_data['sha1sum']))
pretrained_model = None
return None
else:
logging('Model already exists')
pass
else:
logging('Downloading model file from %s'%(meta_data['url']))
urllib.request.urlretrieve(meta_data['url'], pretrained_model)
logging('Checking SHA1...')
sha1 = sha1sum(pretrained_model)
if (sha1 != meta_data['sha1sum']):
logging('Model %s SHA1 is not equal to %s'%(pretrained_model, meta_data['sha1sum']))
pretrained_model = None
return None
else:
logging('Model downloaded')
pass
return None
def download_label():
"""Download label file"""
# Using the scripts inside caffe Debian package to download label file.
# This could also be wrong. Why we don't package the label file?
global label_file
if (os.path.isfile(label_file)):
logging("Label file exists");
pass
else:
logging("Label file not exists. Downloading...");
tmpdir = tempfile.mkdtemp()
s1 = shutil.copy2(os.path.join('/', 'usr', 'share', 'doc', 'caffe-doc',
'data', 'ilsvrc12',
'get_ilsvrc_aux.sh'),
tmpdir)
os.system('sh \'%s\''%(s1));
# FIXME: using /tmp/ will be in-secure.
shutil.copy2(os.path.join(tmpdir, 'synset_words.txt'), '/tmp')
def create_classifier(pretrained_model):
"""Creates a model from saved caffemodel file and returns a classifier."""
# Creates model from saved .caffemodel.
# The following file are shipped inside caffe-doc Debian package
model_def = os.path.join("/", "usr", "share", "doc", "caffe-doc",
"models","bvlc_reference_caffenet",
"deploy.prototxt")
image_dims = [ 256, 256 ]
# The following file are shipped inside python3-caffe-cpu Debian package
mean = np.load(os.path.join('/', 'usr', 'lib', 'python3',
'dist-packages', 'caffe', 'imagenet',
'ilsvrc_2012_mean.npy'))
channel_swap = [2, 1, 0]
raw_scale = 255.0
caffe.set_mode_cpu()
classifier = caffe.Classifier(model_def, pretrained_model,
image_dims=image_dims, mean=mean,
raw_scale=raw_scale,
channel_swap=channel_swap)
return classifier
def server(labels):
"""Infinite loop serving inference requests"""
global image_queue, sess
logging(threading.current_thread().getName(), "is running")
while True:
input_name = image_queue.get()
if (input_name.endswith('npy')):
inputs = np.load(input_name)
else:
inputs = [caffe.io.load_image(input_name)]
predictions = caffe_classifier.predict(inputs, False)
# make tuples
predictions_list = predictions[0].tolist()
data = zip(predictions_list, caffe_labels)
output_name = input_name+'.txt'
output_done_name = output_name+'.done'
output = open(output_name, 'wt')
for d in sorted(data, reverse=True):
human_string = d[1]
score = d[0]
print("%s (score = %.5f)" % (human_string, score), file=output)
if (score < 0.00001):
break
output.close()
touch(output_done_name)
logging(input_name, " classified!")
class EventHandler(PatternMatchingEventHandler):
def process(self, event):
"""
event.event_type
'modified' | 'created' | 'moved' | 'deleted'
event.is_directory
True | False
event.src_path
path/to/observed/file
"""
# the file will be processed there
global image_queue
_msg = event.src_path
image_queue.put(_msg.rstrip('.done'))
os.remove(_msg)
logging(_msg, event.event_type)
# ignore all other types of events except 'modified'
def on_created(self, event):
self.process(event)
if __name__ == '__main__':
pid = str(os.getpid())
pidfile = "/tmp/classify_server.pid"
if os.path.isfile(pidfile):
logging("%s already exists, exiting" % pidfile)
sys.exit(1)
with open(pidfile, 'w') as f:
f.write(pid)
# Please read /usr/share/doc/caffe-doc/models/bvlc_reference_caffenet/readme.md
download_model()
download_label()
caffe_labels = load_labels(label_file)
caffe_classifier = create_classifier(pretrained_model)
# workaround the issue that SIGINT cannot be received (fork a child to
# avoid blocking the main process in Thread.join()
child_pid = os.fork()
if child_pid == 0:
# child
# observer handles event in a different thread
observer = Observer()
observer.schedule(EventHandler(['*.jpg.done']), path=image_dir)
observer.start()
# Create a server thread for each CPU core
cpu_count = multiprocessing.cpu_count()
for i in range(1):
threads.append(threading.Thread(target=server,
name='Server thread %d' % i,
args=({},)))
for t in threads: t.start()
for t in threads: t.join()
else:
# parent
try:
os.wait()
except KeyboardInterrupt:
os.kill(child_pid, signal.SIGKILL)
os.unlink(pidfile)
|