File: ChordDatabase.cpp

package info (click to toggle)
bespokesynth 1.3.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,716 kB
  • sloc: cpp: 117,136; ansic: 18,752; python: 593; xml: 74; makefile: 4
file content (440 lines) | stat: -rw-r--r-- 19,578 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/**
    bespoke synth, a software modular synthesizer
    Copyright (C) 2021 Ryan Challinor (contact: awwbees@gmail.com)

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
**/
/*
  ==============================================================================

    ChordDatabase.cpp
    Created: 26 Mar 2018 9:54:44pm
    Author:  Ryan Challinor

  ==============================================================================
*/

#include "ChordDatabase.h"
#include "Scale.h"
#include <set>

ChordDatabase::ChordDatabase()
{
   // Major scale like chords
   //
   // { 10.0f, -2.0f, -1.0f, 10.0f, -2.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, -1.0f, -1.0f } // Based on Mixolydian/Ionian mode

   // ref:                           {  0/12,  1/13,  2/14,  3/15,  4/16,  5/17,  6/18,  7/19,  8/20,  9/21, 10/22, 11/23}));
   //                                {     C,    C#,     D,    D#,     E,     F,    F#,     G,    G#,     A,    A#,     B}));

   mChordShapes.push_back(ChordShape("", { 0, 4, 7 },
                                     { 10.0f, -2.0f, -1.0f, -5.0f, 10.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, -1.0f, -1.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("sus4", { 0, 5, 7 },
                                     { 10.0f, -2.0f, -1.0f, -5.0f, -5.0f, 10.0f, -2.0f, 10.0f, -2.0f, -1.0f, -1.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("sus2", { 0, 2, 7 },
                                     { 10.0f, -2.0f, 10.0f, -5.0f, -5.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, -1.0f, -2.0f }, 2.0f));

   mChordShapes.push_back(ChordShape("2", { 0, 2, 4, 7 },
                                     { 10.0f, -2.0f, 10.0f, -5.0f, 10.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, -1.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("4", { 0, 4, 5, 7 },
                                     { 10.0f, -2.0f, -1.0f, -5.0f, 10.0f, 10.0f, -2.0f, 10.0f, -2.0f, -1.0f, -1.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("6", { 0, 4, 7, 9 },
                                     { 10.0f, -2.0f, -1.0f, -5.0f, 10.0f, -1.0f, -2.0f, 10.0f, -2.0f, 10.0f, -1.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("7", { 0, 4, 7, 10 },
                                     { 10.0f, -2.0f, -1.0f, -5.0f, 10.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, 10.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("9", { 0, 4, 7, 10, 14 },
                                     { 10.0f, -2.0f, 10.0f, -5.0f, 10.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, 8.00f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("11", { 0, 4, 7, 10, 14, 17 },
                                     { 10.0f, -2.0f, 8.00f, -5.0f, 10.0f, 10.0f, -2.0f, 10.0f, -2.0f, -1.0f, 8.00f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("13", { 0, 4, 7, 10, 14, 17, 21 },
                                     { 10.0f, -2.0f, 8.00f, -2.0f, 10.0f, 8.00f, -2.0f, 10.0f, -2.0f, 10.0f, 8.00f, -2.0f }, 2.0f));


   mChordShapes.push_back(ChordShape("6/9", { 0, 4, 7, 9, 14 },
                                     { 10.0f, -2.0f, 10.0f, -5.0f, 10.0f, -1.0f, -2.0f, 10.0f, -2.0f, 10.0f, -5.0f, -5.0f }, 2.0f));


   mChordShapes.push_back(ChordShape("maj7", { 0, 4, 7, 11 },
                                     { 10.0f, -2.0f, -1.0f, -5.0f, 10.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, -2.0f, 10.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("maj9", { 0, 4, 7, 11, 14 },
                                     { 10.0f, -2.0f, 10.0f, -5.0f, 10.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, -2.0f, 8.00f }, 2.0f));
   mChordShapes.push_back(ChordShape("maj11", { 0, 4, 7, 11, 14, 17 },
                                     { 10.0f, -2.0f, 8.00f, -5.0f, 10.0f, 10.0f, -2.0f, 10.0f, -2.0f, -1.0f, -2.0f, 8.00f }, 2.0f));
   mChordShapes.push_back(ChordShape("maj13", { 0, 4, 7, 11, 14, 17, 21 },
                                     { 10.0f, -2.0f, 8.00f, -5.0f, 10.0f, 8.00f, -2.0f, 10.0f, -2.0f, 10.0f, -2.0f, 8.00f }, 2.0f));

   // Minor scale like chords
   // { 10.0f, -2.0f, -1.0f, 10.0f, -2.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, -2.0f, -1.0f } // Based on Dorian/Aeolian mode

   // ref:                           {  0/12,  1/13,  2/14,  3/15,  4/16,  5/17,  6/18,  7/19,  8/20,  9/21, 10/22, 11/23}));
   //                                {     C,    C#,     D,    D#,     E,     F,    F#,     G,    G#,     A,    A#,     B}));

   mChordShapes.push_back(ChordShape("m", { 0, 3, 7 },
                                     { 10.0f, -2.0f, -1.0f, 10.0f, -5.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, -1.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("m6", { 0, 3, 7, 9 },
                                     { 10.0f, -2.0f, -1.0f, 10.0f, -5.0f, -1.0f, -2.0f, 10.0f, -2.0f, 10.0f, -1.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("m7", { 0, 3, 7, 10 },
                                     { 10.0f, -2.0f, -1.0f, 10.0f, -5.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, 10.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("m9", { 0, 3, 7, 10, 14 },
                                     { 10.0f, -2.0f, 10.0f, 10.0f, -5.0f, -1.0f, -2.0f, 10.0f, -2.0f, -1.0f, 8.00f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("m11", { 0, 3, 7, 10, 14, 17 },
                                     { 10.0f, -2.0f, 8.00f, 10.0f, -5.0f, 10.0f, -2.0f, 10.0f, -2.0f, -1.0f, 8.00f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("m13", { 0, 3, 7, 10, 14, 17, 21 },
                                     { 10.0f, -2.0f, 8.00f, 10.0f, -5.0f, 8.00f, -2.0f, 10.0f, -2.0f, 10.0f, 8.00f, -2.0f }, 2.0f));

   // Mixed
   // { 10.0f, -2.0f, -2.0f, -1.0f, 10.0f, -2.0f, -2.0f, -1.0f, 10.0f, -2.0f, -2.0f, -1.0f } // Based on augmented scale
   // { 10.0f, -2.0f, -1.0f, 10.0f, -2.0f, -1.0f, 10.0f, -2.0f, -1.0f, -1.0f, -2.0f, -1.0f } // Based on diminished scale
   // { 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, -2.0f, -2.0f, -2.0f } // no scale? {:^c (i.e. don't alter mixed chords)

   // ref:                           {  0/12,  1/13,  2/14,  3/15,  4/16,  5/17,  6/18,  7/19,  8/20,  9/21, 10/22, 11/23}));
   //                                {     C,    C#,     D,    D#,     E,     F,    F#,     G,    G#,     A,    A#,     B}));
   mChordShapes.push_back(ChordShape("aug", { 0, 4, 8 },
                                     { 10.0f, -2.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("aug7", { 0, 4, 8, 10 },
                                     { 10.0f, -2.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, -2.0f, 10.0f, -2.0f, 10.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("aug/maj7", { 0, 4, 8, 11 },
                                     { 10.0f, -2.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, 10.0f }, 2.0f));

   mChordShapes.push_back(ChordShape("dim", { 0, 3, 6 },
                                     { 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, -2.0f, -2.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("dim7", { 0, 3, 6, 9 },
                                     { 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("min7dim5", { 0, 3, 6, 10 },
                                     { 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, -2.0f, 10.0f, -2.0f }, 2.0f));

   mChordShapes.push_back(ChordShape("dom7dim5", { 0, 4, 6, 10 },
                                     { 10.0f, -2.0f, -2.0f, -2.0f, 10.0f, -2.0f, 10.0f, -2.0f, -2.0f, -2.0f, 10.0f, -2.0f }, 2.0f));
   mChordShapes.push_back(ChordShape("min/maj7", { 0, 3, 7, 11 },
                                     { 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, 10.0f, -2.0f, -2.0f, -2.0f, -2.0f, 10.0f }, 2.0f));
}

std::set<std::string> ChordDatabase::GetChordNamesAdvanced(const std::vector<int>& pitches, bool useScaleDegrees, bool showIntervals) const
{
   std::set<std::string> chordNames;

   int numPitches = (int)pitches.size();
   if (numPitches == 1 && useScaleDegrees && showIntervals)
   {
      // Show scale degree of played note. Not really chord detection, but may be useful
      chordNames.insert(NoteNameScaleRelative(pitches[0], true));
      return chordNames;
   }
   else if (numPitches == 2 && showIntervals)
   {
      // Intervals up to 11th
      const std::vector<std::string> intervals = { "1st", "min 2nd", "2nd", "min 3rd", "3rd", "4th", "aug 4th/dim 5th", "5th",
                                                   "min 6th", "6th", "min 7th", "7th", "oct", "min 9th", "9th", "min 10th", "10th", "11th" };
      int interval = abs(pitches[1] - pitches[0]);
      int lowest = (pitches[0] < pitches[1] ? pitches[0] : pitches[1]) % 12;
      if (interval < intervals.size())
         chordNames.insert(intervals[interval] + "/" + NoteNameScaleRelative(lowest, useScaleDegrees));

      return chordNames;
   }

   // Create a boolean vector with each pitch played, set to be in one octave
   std::set<int> octavePitches;

   for (int pitch : pitches)
   {
      octavePitches.insert(pitch % 12);
   }

   if (octavePitches.size() < 3)
      return chordNames;

   // Considering each played note as a possible root, find the root and chord with the greatest weight

   float maxWeight = 0.0f;
   int lowestPitch = pitches[0] % 12;

   std::list<std::tuple<int, ChordShape>> bestChords; // Is this cursed?

   // For each note played
   for (int rootOctavePitch : octavePitches)
   {
      // Try note as the root, multiply with the weights of the notes to be played
      for (ChordShape shape : mChordShapes)
      {
         float chordWeight = shape.mWeightSum;

         // Add some extra weight if the lowest played note is the root
         chordWeight += rootOctavePitch == lowestPitch ? shape.mRootPosBias : 0;

         // Add the weights for the pitches in the chord
         for (int octavePitch : octavePitches)
         {
            // Looping over the same stuff within the same loop, crazy!
            chordWeight += 2.0f * shape.mWeights[(12 + octavePitch - rootOctavePitch) % 12];
         }

         // Consider the chords with the highest weight as the best fit
         if (chordWeight > maxWeight + FLT_EPSILON)
         {
            maxWeight = chordWeight;

            // Better weight than found before, replace list with this chord
            bestChords.clear();
            bestChords.push_back(std::make_tuple(rootOctavePitch, shape));
         }
         else if (chordWeight >= maxWeight - FLT_EPSILON)
         {
            // Equal weight as current best, add to list
            bestChords.push_back(std::make_tuple(rootOctavePitch, shape));
         }
      }
   }

   for (const auto& chord : bestChords)
   {
      chordNames.insert(GetChordNameAdvanced(pitches, std::get<0>(chord), std::get<1>(chord), useScaleDegrees));
   }

   return chordNames;
}

std::string ChordDatabase::GetChordNameAdvanced(const std::vector<int>& pitches, const int root, const ChordShape shape, bool useScaleDegrees) const
{
   std::string rootName;
   std::string chordName;
   if (useScaleDegrees)
   {
      rootName = ChordNameScaleRelative(root);
      chordName = rootName + shape.mName;
   }
   else
   {
      rootName = NoteNameScaleRelative(root, false);
      chordName = rootName + shape.mName;
   }


   // Alterations

   std::set<int> rootScalePitches;
   const std::set<int> majorScalePitches = { 0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 17, 19, 21, 23 };
   const std::vector<std::string> Alterations = { "1", "(m2)", "2", "(m3)", "3", "4", "(b5)", "5", "(#5)", "6", "(b7)", "7",
                                                  "8", "(b9)", "9", "(#9)", "10", "11", "(#11)", "12", "(b13)", "13", "(#13)", "14" };

   std::string alterations = "";

   int rootPitch = 0;
   bool foundRoot = false;

   // Find hightest root before other notes (Needed to distinguish between notes in different octaves and for inverted chords)
   for (int pitch : pitches)
   {
      if ((12 + pitch - root) % 12 == 0)
      {
         rootPitch = pitch;
         foundRoot = true;
         continue;
      }
      if (foundRoot)
         break;
   }

   // Calculate pitches in the key of the root
   for (int pitch : pitches)
   {
      // Use difference between highest root up to two octaves, otherwise use first octave
      rootScalePitches.insert(pitch - rootPitch >= 0 ? (pitch - rootPitch) % 24 : (12 + pitch - root) % 12);
   }

   // For all played notes
   for (int shapePitch : shape.mElements)
   {
      // If pitch played, continue
      if (rootScalePitches.find(shapePitch) != rootScalePitches.end() ||
          rootScalePitches.find((shapePitch + 12) % 24) != rootScalePitches.end())
      {
         rootScalePitches.erase(shapePitch);
         rootScalePitches.erase((shapePitch + 12) % 24);
         continue;
      }

      // If pitch not played, test if alteration played instead
      // shapepitch has to be in scale of root and alteration has to be played
      if (majorScalePitches.find(shapePitch) != majorScalePitches.end())
      {
         // Don't need to modulo the indices here because rootScalePitches are <24
         // and the indices must be found in rootScalePitches

         // Alterations up
         if (rootScalePitches.find(shapePitch + 1) != rootScalePitches.end())
         {
            alterations += Alterations[shapePitch + 1];
            rootScalePitches.erase((shapePitch + 1));
         }
         else if (rootScalePitches.find(shapePitch + 12 + 1) != rootScalePitches.end())
         {
            // No +12 as the note from the shape is altered, not the note found in rootScalePitches
            alterations += Alterations[shapePitch + 1];
            rootScalePitches.erase((shapePitch + 12 + 1));
         }
         // Alterations down
         else if (rootScalePitches.find(shapePitch - 1) != rootScalePitches.end())
         {
            alterations += Alterations[shapePitch - 1];
            rootScalePitches.erase((shapePitch - 1));
         }
         else if (rootScalePitches.find(shapePitch + 12 - 1) != rootScalePitches.end())
         {
            alterations += Alterations[shapePitch - 1];
            rootScalePitches.erase((shapePitch + 12 - 1));
         }
         // Otherwise, display missing pitches (except 5 because of neutral tone) as omitX
         else if (shapePitch != 7 && shapePitch != 19)
         {
            alterations += "omit" + Alterations[shapePitch];
         }
      }
   }

   // Display left-over pitches as addX
   for (int playedPitch : rootScalePitches)
   {
      alterations += "add" + Alterations[playedPitch];
   }

   // If lowest note is not the root, notate it ass the bass note
   // (kind of extra since there's lots of inversions, might need a check to see if note is in the chord shape, or a check on the distance between the rest of the notes)
   int lowest = 12 + pitches[0] - root % 12;
   if (lowest % 12 != 0)
   {
      alterations += "/" + NoteNameScaleRelative(pitches[0], useScaleDegrees);
   }

   return chordName + alterations;
}

std::string ChordDatabase::ChordNameScaleRelative(int rootPitch) const
{
   const std::vector<std::string> chordNames = { "I", "bII", "II", "bIII", "III", "IV", "bV", "V", "bVI", "VI", "bVII", "VII" };
   int relpitch = (rootPitch + 12 - TheScale->ScaleRoot()) % 12;
   return chordNames[relpitch];
}

std::string ChordDatabase::NoteNameScaleRelative(int pitch, bool useDegrees) const
{

   if (useDegrees)
   {
      int relpitch = (pitch + 12 - TheScale->ScaleRoot()) % 12;

      //const std::vector<std::string> flats = { "1^", "2^b", "2^", "3^b", "3^", "4^", "5^b", "5^", "6^b", "6^", "7^b", "7^" };
      //const std::vector<std::string> sharps = { "1^", "1^#", "2^", "2^#", "3^", "4^", "4^#", "5^", "5^#", "6^", "6^#", "7^" };
      // Choice of flats or sharps here depends strongly on context that can't really be gathered, so instead use some common options
      const std::vector<std::string> accidentals = { "1^", "2^b", "2^", "3^b", "3^", "4^", "5^b", "5^", "5^#", "6^", "7^b", "7^" };

      // For consistency with scale types, all scales are related to the major scale. i.e. in C minor Cb is 3^b rather than 3^.
      return accidentals[relpitch];
   }
   else
   {
      pitch %= 12;

      if (TheScale->GetType() == "aeolian")
      {
         const std::vector<int> flatScales = { 0, 2, 3, 5, 8, 10 }; // D G C F Ab Eb Bb
         if (std::find(flatScales.begin(), flatScales.end(), TheScale->ScaleRoot()) != flatScales.end())
            return NoteName(pitch, true);
         else
            return NoteName(pitch);
      }
      else
      {
         const std::vector<int> flatScales = { 0, 1, 3, 5, 6, 8, 10 }; // C F Bb Eb Ab Gb Db (Cb not included)
         if (std::find(flatScales.begin(), flatScales.end(), TheScale->ScaleRoot()) != flatScales.end())
            return NoteName(pitch, true);
         else
            return NoteName(pitch);
      }
   }
}

std::string ChordDatabase::GetChordName(std::vector<int> pitches) const
{
   int numPitches = (int)pitches.size();
   if (numPitches < 3)
      return "None";

   std::list<std::string> names;

   sort(pitches.begin(), pitches.end());
   for (int inversion = 0; inversion < numPitches; ++inversion)
   {
      for (ChordShape shape : mChordShapes)
      {
         if (shape.mElements.size() == numPitches)
         {
            int root = pitches[(numPitches - inversion) % numPitches] - (inversion > 0 ? 12 : 0);
            bool match = true;
            for (int i = 0; i < numPitches; ++i)
            {
               if (shape.mElements[(i + inversion) % numPitches] != pitches[i] - root - (i >= numPitches - inversion ? 12 : 0))
               {
                  match = false;
                  break;
               }
            }
            if (match)
            {
               int degree = TheScale->GetToneFromPitch(root) % 7;
               names.push_back(NoteName(root) + shape.mName + (inversion == 0 ? "" : " (" + ofToString(inversion) + "inv)") + " (" + GetRomanNumeralForDegree(degree) + ")");
            }
         }
      }
   }

   if (names.size() == 0)
      return "Unknown";

   std::string ret = "";
   for (std::string name : names)
      ret += name + "; ";
   return ret.substr(0, ret.length() - 2);
}

std::vector<int> ChordDatabase::GetChord(std::string name, int inversion) const
{
   std::vector<int> ret;
   for (auto shape : mChordShapes)
   {
      if (shape.mName == name)
      {
         bool isInverted = (inversion != 0);
         for (int i = 0; i < shape.mElements.size(); ++i)
         {
            int index = (i + inversion) % shape.mElements.size();
            int val = shape.mElements[index];
            if (index >= inversion && isInverted)
               val -= 12;
            ret.push_back(val);
         }
      }
   }
   return ret;
}

std::vector<std::string> ChordDatabase::GetChordNames() const
{
   std::vector<std::string> ret;

   for (auto shape : mChordShapes)
      ret.push_back(shape.mName);

   return ret;
}