File: FFT.cpp

package info (click to toggle)
bespokesynth 1.3.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,716 kB
  • sloc: cpp: 117,136; ansic: 18,752; python: 593; xml: 74; makefile: 4
file content (556 lines) | stat: -rw-r--r-- 17,351 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
/**
    bespoke synth, a software modular synthesizer
    Copyright (C) 2021 Ryan Challinor (contact: awwbees@gmail.com)

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
**/
//
//  FFT.cpp
//  modularSynth
//
//  Created by Ryan Challinor on 1/27/13.
//
//

#include "FFT.h"
#include <cstring>

// Constructor for FFT routine
FFT::FFT(int nfft)
{
   mNfft = nfft;
   mNumfreqs = nfft / 2 + 1;

   mFft_data = (float*)calloc(nfft, sizeof(float));
}

// Destructor for FFT routine
FFT::~FFT()
{
   free(mFft_data);
}

// Perform forward FFT of real data
// Accepts:
//   input - pointer to an array of (real) input values, size nfft
//   output_re - pointer to an array of the real part of the output,
//     size nfft/2 + 1
//   output_im - pointer to an array of the imaginary part of the output,
//     size nfft/2 + 1
void FFT::Forward(float* input, float* output_re, float* output_im)
{
   int hnfft = mNfft / 2;

   for (int ti = 0; ti < mNfft; ti++)
   {
      mFft_data[ti] = input[ti];
   }

   mayer_realfft(mNfft, mFft_data);

   output_im[0] = 0;
   for (int ti = 0; ti < hnfft; ti++)
   {
      output_re[ti] = mFft_data[ti];
      output_im[ti] = mFft_data[mNfft - 1 - ti];
   }
   output_re[hnfft] = mFft_data[hnfft];
   output_im[hnfft] = 0;
}

// Perform inverse FFT, returning real data
// Accepts:
//   input_re - pointer to an array of the real part of the output,
//     size nfft/2 + 1
//   input_im - pointer to an array of the imaginary part of the output,
//     size nfft/2 + 1
//   output - pointer to an array of (real) input values, size nfft
void FFT::Inverse(float* input_re, float* input_im, float* output)
{
   int hnfft;

   hnfft = mNfft / 2;

   for (int ti = 0; ti < hnfft; ti++)
   {
      mFft_data[ti] = input_re[ti];
      mFft_data[mNfft - 1 - ti] = input_im[ti];
   }
   mFft_data[hnfft] = input_re[hnfft];

   mayer_realifft(mNfft, mFft_data);

   for (int ti = 0; ti < mNfft; ti++)
   {
      output[ti] = mFft_data[ti];
   }
}


/* This is the FFT routine taken from PureData, a great piece of
 software by Miller S. Puckette.
 http://crca.ucsd.edu/~msp/software.html */

/*
 ** FFT and FHT routines
 **  Copyright 1988, 1993; Ron Mayer
 **
 **  mayer_fht(fz,n);
 **      Does a hartley transform of "n" points in the array "fz".
 **  mayer_fft(n,real,imag)
 **      Does a fourier transform of "n" points of the "real" and
 **      "imag" arrays.
 **  mayer_ifft(n,real,imag)
 **      Does an inverse fourier transform of "n" points of the "real"
 **      and "imag" arrays.
 **  mayer_realfft(n,real)
 **      Does a real-valued fourier transform of "n" points of the
 **      "real" array.  The real part of the transform ends
 **      up in the first half of the array and the imaginary part of the
 **      transform ends up in the second half of the array.
 **  mayer_realifft(n,real)
 **      The inverse of the realfft() routine above.
 **
 **
 ** NOTE: This routine uses at least 2 patented algorithms, and may be
 **       under the restrictions of a bunch of different organizations.
 **       Although I wrote it completely myself, it is kind of a derivative
 **       of a routine I once authored and released under the GPL, so it
 **       may fall under the free software foundation's restrictions;
 **       it was worked on as a Stanford Univ project, so they claim
 **       some rights to it; it was further optimized at work here, so
 **       I think this company claims parts of it.  The patents are
 **       held by R. Bracewell (the FHT algorithm) and O. Buneman (the
 **       trig generator), both at Stanford Univ.
 **       If it were up to me, I'd say go do whatever you want with it;
 **       but it would be polite to give credit to the following people
 **       if you use this anywhere:
 **           Euler     - probable inventor of the fourier transform.
 **           Gauss     - probable inventor of the FFT.
 **           Hartley   - probable inventor of the hartley transform.
 **           Buneman   - for a really cool trig generator
 **           Mayer(me) - for authoring this particular version and
 **                       including all the optimizations in one package.
 **       Thanks,
 **       Ron Mayer; mayer@acuson.com
 **
 */

/* This is a slightly modified version of Mayer's contribution; write
 * msp@ucsd.edu for the original code.  Kudos to Mayer for a fine piece
 * of work.  -msp
 */

#define REAL float
#define GOOD_TRIG

#ifdef GOOD_TRIG
#else
#define FAST_TRIG
#endif

#if defined(GOOD_TRIG)
#define FHT_SWAP(a, b, t) \
   {                      \
      (t) = (a);          \
      (a) = (b);          \
      (b) = (t);          \
   }
#define TRIG_VARS \
   int t_lam = 0;
#define TRIG_INIT(k, c, s)      \
   {                            \
      int i;                    \
      for (i = 2; i <= k; i++)  \
      {                         \
         coswrk[i] = costab[i]; \
         sinwrk[i] = sintab[i]; \
      }                         \
      t_lam = 0;                \
      c = 1;                    \
      s = 0;                    \
   }
#define TRIG_NEXT(k, c, s)                                    \
   {                                                          \
      int i, j;                                               \
      (t_lam)++;                                              \
      for (i = 0; !((1 << i) & t_lam); i++)                   \
         ;                                                    \
      i = k - i;                                              \
      s = sinwrk[i];                                          \
      c = coswrk[i];                                          \
      if (i > 1)                                              \
      {                                                       \
         for (j = k - i + 2; (1 << j) & t_lam; j++)           \
            ;                                                 \
         j = k - j;                                           \
         sinwrk[i] = halsec[i] * (sinwrk[i - 1] + sinwrk[j]); \
         coswrk[i] = halsec[i] * (coswrk[i - 1] + coswrk[j]); \
      }                                                       \
   }
#define TRIG_RESET(k, c, s)
#endif

#if defined(FAST_TRIG)
#define TRIG_VARS \
   REAL t_c, t_s;
#define TRIG_INIT(k, c, s) \
   {                       \
      t_c = costab[k];     \
      t_s = sintab[k];     \
      c = 1;               \
      s = 0;               \
   }
#define TRIG_NEXT(k, c, s)   \
   {                         \
      REAL t = c;            \
      c = t * t_c - s * t_s; \
      s = t * t_s + s * t_c; \
   }
#define TRIG_RESET(k, c, s)
#endif

static REAL halsec[20] = {
   0,
   0,
   .54119610014619698439972320536638942006107206337801,
   .50979557910415916894193980398784391368261849190893,
   .50241928618815570551167011928012092247859337193963,
   .50060299823519630134550410676638239611758632599591,
   .50015063602065098821477101271097658495974913010340,
   .50003765191554772296778139077905492847503165398345,
   .50000941253588775676512870469186533538523133757983,
   .50000235310628608051401267171204408939326297376426,
   .50000058827484117879868526730916804925780637276181,
   .50000014706860214875463798283871198206179118093251,
   .50000003676714377807315864400643020315103490883972,
   .50000000919178552207366560348853455333939112569380,
   .50000000229794635411562887767906868558991922348920,
   .50000000057448658687873302235147272458812263401372
};
static REAL costab[20] = {
   .00000000000000000000000000000000000000000000000000,
   .70710678118654752440084436210484903928483593768847,
   .92387953251128675612818318939678828682241662586364,
   .98078528040323044912618223613423903697393373089333,
   .99518472667219688624483695310947992157547486872985,
   .99879545620517239271477160475910069444320361470461,
   .99969881869620422011576564966617219685006108125772,
   .99992470183914454092164649119638322435060646880221,
   .99998117528260114265699043772856771617391725094433,
   .99999529380957617151158012570011989955298763362218,
   .99999882345170190992902571017152601904826792288976,
   .99999970586288221916022821773876567711626389934930,
   .99999992646571785114473148070738785694820115568892,
   .99999998161642929380834691540290971450507605124278,
   .99999999540410731289097193313960614895889430318945,
   .99999999885102682756267330779455410840053741619428
};
static REAL sintab[20] = {
   1.0000000000000000000000000000000000000000000000000,
   .70710678118654752440084436210484903928483593768846,
   .38268343236508977172845998403039886676134456248561,
   .19509032201612826784828486847702224092769161775195,
   .09801714032956060199419556388864184586113667316749,
   .04906767432741801425495497694268265831474536302574,
   .02454122852291228803173452945928292506546611923944,
   .01227153828571992607940826195100321214037231959176,
   .00613588464915447535964023459037258091705788631738,
   .00306795676296597627014536549091984251894461021344,
   .00153398018628476561230369715026407907995486457522,
   .00076699031874270452693856835794857664314091945205,
   .00038349518757139558907246168118138126339502603495,
   .00019174759731070330743990956198900093346887403385,
   .00009587379909597734587051721097647635118706561284,
   .00004793689960306688454900399049465887274686668768
};
static REAL coswrk[20] = {
   .00000000000000000000000000000000000000000000000000,
   .70710678118654752440084436210484903928483593768847,
   .92387953251128675612818318939678828682241662586364,
   .98078528040323044912618223613423903697393373089333,
   .99518472667219688624483695310947992157547486872985,
   .99879545620517239271477160475910069444320361470461,
   .99969881869620422011576564966617219685006108125772,
   .99992470183914454092164649119638322435060646880221,
   .99998117528260114265699043772856771617391725094433,
   .99999529380957617151158012570011989955298763362218,
   .99999882345170190992902571017152601904826792288976,
   .99999970586288221916022821773876567711626389934930,
   .99999992646571785114473148070738785694820115568892,
   .99999998161642929380834691540290971450507605124278,
   .99999999540410731289097193313960614895889430318945,
   .99999999885102682756267330779455410840053741619428
};
static REAL sinwrk[20] = {
   1.0000000000000000000000000000000000000000000000000,
   .70710678118654752440084436210484903928483593768846,
   .38268343236508977172845998403039886676134456248561,
   .19509032201612826784828486847702224092769161775195,
   .09801714032956060199419556388864184586113667316749,
   .04906767432741801425495497694268265831474536302574,
   .02454122852291228803173452945928292506546611923944,
   .01227153828571992607940826195100321214037231959176,
   .00613588464915447535964023459037258091705788631738,
   .00306795676296597627014536549091984251894461021344,
   .00153398018628476561230369715026407907995486457522,
   .00076699031874270452693856835794857664314091945205,
   .00038349518757139558907246168118138126339502603495,
   .00019174759731070330743990956198900093346887403385,
   .00009587379909597734587051721097647635118706561284,
   .00004793689960306688454900399049465887274686668768
};


#define SQRT2_2 0.70710678118654752440084436210484
#define SQRT2 2 * 0.70710678118654752440084436210484

void mayer_fht(REAL* fz, int n)
{
   /*  REAL a,b;
    REAL c1,s1,s2,c2,s3,c3,s4,c4;
    REAL f0,g0,f1,g1,f2,g2,f3,g3; */
   int k, k1, k2, k3, k4, kx;
   REAL *fi, *fn, *gi;
   TRIG_VARS;

   for (k1 = 1, k2 = 0; k1 < n; k1++)
   {
      REAL aa;
      for (k = n >> 1; (!((k2 ^= k) & k)); k >>= 1)
         ;
      if (k1 > k2)
      {
         aa = fz[k1];
         fz[k1] = fz[k2];
         fz[k2] = aa;
      }
   }
   for (k = 0; (1 << k) < n; k++)
      ;
   k &= 1;
   if (k == 0)
   {
      for (fi = fz, fn = fz + n; fi < fn; fi += 4)
      {
         REAL f0, f1, f2, f3;
         f1 = fi[0] - fi[1];
         f0 = fi[0] + fi[1];
         f3 = fi[2] - fi[3];
         f2 = fi[2] + fi[3];
         fi[2] = (f0 - f2);
         fi[0] = (f0 + f2);
         fi[3] = (f1 - f3);
         fi[1] = (f1 + f3);
      }
   }
   else
   {
      for (fi = fz, fn = fz + n, gi = fi + 1; fi < fn; fi += 8, gi += 8)
      {
         REAL bs1, bc1, bs2, bc2, bs3, bc3, bs4, bc4,
         bg0, bf0, bf1, bg1, bf2, bg2, bf3, bg3;
         bc1 = fi[0] - gi[0];
         bs1 = fi[0] + gi[0];
         bc2 = fi[2] - gi[2];
         bs2 = fi[2] + gi[2];
         bc3 = fi[4] - gi[4];
         bs3 = fi[4] + gi[4];
         bc4 = fi[6] - gi[6];
         bs4 = fi[6] + gi[6];
         bf1 = (bs1 - bs2);
         bf0 = (bs1 + bs2);
         bg1 = (bc1 - bc2);
         bg0 = (bc1 + bc2);
         bf3 = (bs3 - bs4);
         bf2 = (bs3 + bs4);
         bg3 = SQRT2 * bc4;
         bg2 = SQRT2 * bc3;
         fi[4] = bf0 - bf2;
         fi[0] = bf0 + bf2;
         fi[6] = bf1 - bf3;
         fi[2] = bf1 + bf3;
         gi[4] = bg0 - bg2;
         gi[0] = bg0 + bg2;
         gi[6] = bg1 - bg3;
         gi[2] = bg1 + bg3;
      }
   }
   if (n < 16)
      return;

   do
   {
      REAL s1, c1;
      int ii;
      k += 2;
      k1 = 1 << k;
      k2 = k1 << 1;
      k4 = k2 << 1;
      k3 = k2 + k1;
      kx = k1 >> 1;
      fi = fz;
      gi = fi + kx;
      fn = fz + n;
      do
      {
         REAL g0, f0, f1, g1, f2, g2, f3, g3;
         f1 = fi[0] - fi[k1];
         f0 = fi[0] + fi[k1];
         f3 = fi[k2] - fi[k3];
         f2 = fi[k2] + fi[k3];
         fi[k2] = f0 - f2;
         fi[0] = f0 + f2;
         fi[k3] = f1 - f3;
         fi[k1] = f1 + f3;
         g1 = gi[0] - gi[k1];
         g0 = gi[0] + gi[k1];
         g3 = SQRT2 * gi[k3];
         g2 = SQRT2 * gi[k2];
         gi[k2] = g0 - g2;
         gi[0] = g0 + g2;
         gi[k3] = g1 - g3;
         gi[k1] = g1 + g3;
         gi += k4;
         fi += k4;
      } while (fi < fn);
      TRIG_INIT(k, c1, s1);
      for (ii = 1; ii < kx; ii++)
      {
         REAL c2, s2;
         TRIG_NEXT(k, c1, s1);
         c2 = c1 * c1 - s1 * s1;
         s2 = 2 * (c1 * s1);
         fn = fz + n;
         fi = fz + ii;
         gi = fz + k1 - ii;
         do
         {
            REAL a, b, g0, f0, f1, g1, f2, g2, f3, g3;
            b = s2 * fi[k1] - c2 * gi[k1];
            a = c2 * fi[k1] + s2 * gi[k1];
            f1 = fi[0] - a;
            f0 = fi[0] + a;
            g1 = gi[0] - b;
            g0 = gi[0] + b;
            b = s2 * fi[k3] - c2 * gi[k3];
            a = c2 * fi[k3] + s2 * gi[k3];
            f3 = fi[k2] - a;
            f2 = fi[k2] + a;
            g3 = gi[k2] - b;
            g2 = gi[k2] + b;
            b = s1 * f2 - c1 * g3;
            a = c1 * f2 + s1 * g3;
            fi[k2] = f0 - a;
            fi[0] = f0 + a;
            gi[k3] = g1 - b;
            gi[k1] = g1 + b;
            b = c1 * g2 - s1 * f3;
            a = s1 * g2 + c1 * f3;
            gi[k2] = g0 - a;
            gi[0] = g0 + a;
            fi[k3] = f1 - b;
            fi[k1] = f1 + b;
            gi += k4;
            fi += k4;
         } while (fi < fn);
      }
      TRIG_RESET(k, c1, s1);
   } while (k4 < n);
}

void mayer_fft(int n, REAL* real, REAL* imag)
{
   REAL a, b, c, d;
   REAL q, r, s, t;
   int i, j, k;
   for (i = 1, j = n - 1, k = n / 2; i < k; i++, j--)
   {
      a = real[i];
      b = real[j];
      q = a + b;
      r = a - b;
      c = imag[i];
      d = imag[j];
      s = c + d;
      t = c - d;
      real[i] = (q + t) * .5;
      real[j] = (q - t) * .5;
      imag[i] = (s - r) * .5;
      imag[j] = (s + r) * .5;
   }
   mayer_fht(real, n);
   mayer_fht(imag, n);
}

void mayer_ifft(int n, REAL* real, REAL* imag)
{
   REAL a, b, c, d;
   REAL q, r, s, t;
   int i, j, k;
   mayer_fht(real, n);
   mayer_fht(imag, n);
   for (i = 1, j = n - 1, k = n / 2; i < k; i++, j--)
   {
      a = real[i];
      b = real[j];
      q = a + b;
      r = a - b;
      c = imag[i];
      d = imag[j];
      s = c + d;
      t = c - d;
      imag[i] = (s + r) * 0.5;
      imag[j] = (s - r) * 0.5;
      real[i] = (q - t) * 0.5;
      real[j] = (q + t) * 0.5;
   }
}

void mayer_realfft(int n, REAL* real)
{
   REAL a, b;
   int i, j, k;

   mayer_fht(real, n);
   for (i = 1, j = n - 1, k = n / 2; i < k; i++, j--)
   {
      a = real[i];
      b = real[j];
      real[j] = (a - b) * 0.5;
      real[i] = (a + b) * 0.5;
   }
}

void mayer_realifft(int n, REAL* real)
{
   REAL a, b;
   int i, j, k;

   for (i = 1, j = n - 1, k = n / 2; i < k; i++, j--)
   {
      a = real[i];
      b = real[j];
      real[j] = (a - b);
      real[i] = (a + b);
   }
   mayer_fht(real, n);
}

void FFTData::Clear()
{
   std::memset(mRealValues, 0, mFreqDomainSize * sizeof(float));
   std::memset(mImaginaryValues, 0, mFreqDomainSize * sizeof(float));
   std::memset(mTimeDomain, 0, mWindowSize * sizeof(float));
}