File: MathUtils.cpp

package info (click to toggle)
bespokesynth 1.3.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,716 kB
  • sloc: cpp: 117,136; ansic: 18,752; python: 593; xml: 74; makefile: 4
file content (90 lines) | stat: -rw-r--r-- 2,754 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/**
    bespoke synth, a software modular synthesizer
    Copyright (C) 2021 Ryan Challinor (contact: awwbees@gmail.com)

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
**/
/*
  ==============================================================================

    MathUtils.cpp
    Created: 12 Nov 2017 8:24:59pm
    Author:  Ryan Challinor

  ==============================================================================
*/

#include "MathUtils.h"

namespace MathUtils
{
   float Bezier(float t, float p0, float p1, float p2, float p3)
   {
      return CUBE(1 - t) * p0 + 3 * SQUARE(1 - t) * t * p1 + 3 * (1 - t) * SQUARE(t) * p2 + CUBE(t) * p3;
   }

   ofVec2f Bezier(float t, ofVec2f p0, ofVec2f p1, ofVec2f p2, ofVec2f p3)
   {
      return ofVec2f(Bezier(t, p0.x, p1.x, p2.x, p3.x), Bezier(t, p0.y, p1.y, p2.y, p3.y));

      //below comments help visualize bezier
      /*if (t < .333f)
       return ofVec2f(ofLerp(p0.x,p1.x, t*3), ofLerp(p0.y,p1.y, t*3));
       else if (t < .666f)
       return ofVec2f(ofLerp(p1.x,p2.x,(t-.333f)*3), ofLerp(p1.y,p2.y,(t-.333f)*3));
       else
       return ofVec2f(ofLerp(p2.x,p3.x, (t-.666f)*3), ofLerp(p2.y,p3.y, (t-.666f)*3));*/
   }

   float BezierDerivative(float t, float p0, float p1, float p2, float p3)
   {
      return 3 * SQUARE(1 - t) * (p1 - p0) + 6 * (1 - t) * t * (p2 - p1) + 3 * t * t * (p3 - p2);
   }

   ofVec2f BezierPerpendicular(float t, ofVec2f p0, ofVec2f p1, ofVec2f p2, ofVec2f p3)
   {
      ofVec2f perp(-BezierDerivative(t, p0.y, p1.y, p2.y, p3.y), BezierDerivative(t, p0.x, p1.x, p2.x, p3.x));
      return perp / sqrt(perp.lengthSquared());
   }

   ofVec2f ScaleVec(ofVec2f a, ofVec2f b)
   {
      return ofVec2f(a.x * b.x, a.y * b.y);
   }

   ofVec2f Normal(ofVec2f v)
   {
      return v / sqrtf(v.lengthSquared());
   }

   float Curve(float t, float curve)
   {
      return powf(t, expf(-2 * curve));
   }

   int HighestPow2(int n)
   {
      int res = 0;
      for (int i = n; i >= 1; i--)
      {
         // If i is a power of 2
         if ((i & (i - 1)) == 0)
         {
            res = i;
            break;
         }
      }
      return res;
   }
};