1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
/**
bespoke synth, a software modular synthesizer
Copyright (C) 2021 Ryan Challinor (contact: awwbees@gmail.com)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
**/
//
// PitchShifter.cpp
// Bespoke
//
// Created by Ryan Challinor on 3/21/15.
//
//
#include "PitchShifter.h"
#include "SynthGlobals.h"
#include "Profiler.h"
#include <cstring>
PitchShifter::PitchShifter(int fftBins)
: mFFTBins(fftBins)
, mFFT(mFFTBins)
, mRollingInputBuffer(mFFTBins)
, mRollingOutputBuffer(mFFTBins)
, mFFTData(mFFTBins, mFFTBins / 2 + 1)
{
// Generate a window with a single raised cosine from N/4 to 3N/4
mWindower = new float[mFFTBins];
for (int i = 0; i < mFFTBins; ++i)
mWindower[i] = -.5 * cos(FTWO_PI * i / mFFTBins) + .5;
mLastPhase = new float[mFFTBins / 2 + 1];
mSumPhase = new float[mFFTBins / 2 + 1];
mAnalysisMag = new float[mFFTBins];
mAnalysisFreq = new float[mFFTBins];
mSynthesisMag = new float[mFFTBins];
mSynthesisFreq = new float[mFFTBins];
}
PitchShifter::~PitchShifter()
{
delete[] mLastPhase;
delete[] mSumPhase;
delete[] mWindower;
delete[] mAnalysisMag;
delete[] mAnalysisFreq;
delete[] mSynthesisMag;
delete[] mSynthesisFreq;
}
#define MY_PITCHSHIFTER 0
#if MY_PITCHSHIFTER
void PitchShifter::Process(float* buffer, int bufferSize)
{
PROFILER(PitchShifter);
const int osamp = mOversampling;
const int stepSize = mFFTBins / osamp;
const double expct = 2. * M_PI * (double)stepSize / (double)mFFTBins;
const double freqPerBin = gSampleRate / (double)mFFTBins;
mLatency = mFFTBins - stepSize;
mRollingInputBuffer.WriteChunk(buffer, bufferSize, 0);
//copy rolling input buffer into working buffer and window it
mRollingInputBuffer.ReadChunk(mFFTData.mTimeDomain, mFFTBins, latency);
Mult(mFFTData.mTimeDomain, mWindower, mFFTBins);
mFFT.Forward(mFFTData.mTimeDomain,
mFFTData.mRealValues,
mFFTData.mImaginaryValues);
const int fftFrameSize2 = mFFTBins / 2;
// this is the analysis step
for (int k = 0; k <= fftFrameSize2; k++)
{
// de-interlace FFT buffer
float real = mFFTData.mRealValues[k];
float imag = mFFTData.mImaginaryValues[k];
// compute magnitude and phase
double mag = 2. * sqrt(real * real + imag * imag);
double phase = atan2(imag, real);
// compute phase difference
double diff = phase - mLastPhase[k];
mLastPhase[k] = phase;
// subtract expected phase difference
diff -= (double)k * expct;
// map delta phase into +/- Pi interval
long qpd = diff / M_PI;
if (qpd >= 0)
qpd += qpd & 1;
else
qpd -= qpd & 1;
diff -= M_PI * (double)qpd;
// get deviation from bin frequency from the +/- Pi interval
double deviation = osamp * diff / (2. * M_PI);
// compute the k-th partials' true frequency
double freq = (double)k * freqPerBin + deviation * freqPerBin;
// store magnitude and true frequency in analysis arrays
mAnalysisMag[k] = mag;
mAnalysisFreq[k] = freq;
}
// this does the actual pitch shifting
memset(mSynthesisMag, 0, mFFTBins * sizeof(float));
memset(mSynthesisFreq, 0, mFFTBins * sizeof(float));
for (int k = 0; k <= fftFrameSize2; k++)
{
int index = k * mRatio;
if (index <= fftFrameSize2)
{
mSynthesisMag[index] += mAnalysisMag[k];
mSynthesisFreq[index] = mAnalysisFreq[k] * mRatio;
}
}
// this is the synthesis step
for (int k = 0; k <= fftFrameSize2; k++)
{
// get magnitude and true frequency from synthesis arrays
double mag = mSynthesisMag[k];
double tmp = mSynthesisFreq[k];
// subtract bin mid frequency
tmp -= (double)k * freqPerBin;
// get bin deviation from freq deviation
tmp /= freqPerBin;
// take osamp into account
tmp = 2. * M_PI * tmp / osamp;
// add the overlap phase advance back in
tmp += (double)k * expct;
// accumulate delta phase to get bin phase
mSumPhase[k] += tmp;
double phase = mSumPhase[k];
// get real and imag part and re-interleave
mFFTData.mRealValues[k + 1] = mag * cos(phase);
mFFTData.mImaginaryValues[k + 1] = mag * sin(phase);
}
mFFT.Inverse(mFFTData.mRealValues,
mFFTData.mImaginaryValues,
mFFTData.mTimeDomain);
for (int i = 0; i < bufferSize; ++i)
mRollingOutputBuffer.Write(0);
//copy rolling input buffer into working buffer and window it
for (int i = 0; i < mFFTBins; ++i)
mRollingOutputBuffer.Accum(mFFTBins - i, mFFTData.mTimeDomain[i] * mWindower[i] * .0001f);
for (int i = 0; i < bufferSize; ++i)
buffer[i] = mRollingOutputBuffer.GetSample(latency - i);
}
#else
void smbFft(float* fftBuffer, long fftFrameSize, long sign)
/*
FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse)
Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the
time domain data in fftBuffer[0...2*fftFrameSize-1]. The FFT array takes
and returns the cosine and sine parts in an interleaved manner, ie.
fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize
must be a power of 2. It expects a complex input signal (see footnote 2),
ie. when working with 'common' audio signals our input signal has to be
passed as {in[0],0.,in[1],0.,in[2],0.,...} asf. In that case, the transform
of the frequencies of interest is in fftBuffer[0...fftFrameSize].
*/
{
float wr, wi, arg, *p1, *p2, temp;
float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i;
long i, bitm, j, le, le2, k;
for (i = 2; i < 2 * fftFrameSize - 2; i += 2)
{
for (bitm = 2, j = 0; bitm < 2 * fftFrameSize; bitm <<= 1)
{
if (i & bitm)
j++;
j <<= 1;
}
if (i < j)
{
p1 = fftBuffer + i;
p2 = fftBuffer + j;
temp = *p1;
*(p1++) = *p2;
*(p2++) = temp;
temp = *p1;
*p1 = *p2;
*p2 = temp;
}
}
for (k = 0, le = 2; k < (long)(log(fftFrameSize) / log(2.) + .5); k++)
{
le <<= 1;
le2 = le >> 1;
ur = 1.0;
ui = 0.0;
arg = M_PI / (le2 >> 1);
wr = cos(arg);
wi = sign * sin(arg);
for (j = 0; j < le2; j += 2)
{
p1r = fftBuffer + j;
p1i = p1r + 1;
p2r = p1r + le2;
p2i = p2r + 1;
for (i = j; i < 2 * fftFrameSize; i += le)
{
tr = *p2r * ur - *p2i * ui;
ti = *p2r * ui + *p2i * ur;
*p2r = *p1r - tr;
*p2i = *p1i - ti;
*p1r += tr;
*p1i += ti;
p1r += le;
p1i += le;
p2r += le;
p2i += le;
}
tr = ur * wr - ui * wi;
ui = ur * wi + ui * wr;
ur = tr;
}
}
}
/****************************************************************************
*
* NAME: smbPitchShift.cpp
* VERSION: 1.2
* HOME URL: http://blogs.zynaptiq.com/bernsee
* KNOWN BUGS: none
*
* SYNOPSIS: Routine for doing pitch shifting while maintaining
* duration using the Short Time Fourier Transform.
*
* DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5
* (one octave down) and 2. (one octave up). A value of exactly 1 does not change
* the pitch. numSampsToProcess tells the routine how many samples in indata[0...
* numSampsToProcess-1] should be pitch shifted and moved to outdata[0 ...
* numSampsToProcess-1]. The two buffers can be identical (ie. it can process the
* data in-place). fftFrameSize defines the FFT frame size used for the
* processing. Typical values are 1024, 2048 and 4096. It may be any value <=
* MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
* oversampling factor which also determines the overlap between adjacent STFT
* frames. It should at least be 4 for moderate scaling ratios. A value of 32 is
* recommended for best quality. sampleRate takes the sample rate for the signal
* in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in
* indata[] should be in the range [-1.0, 1.0), which is also the output range
* for the data, make sure you scale the data accordingly (for 16bit signed integers
* you would have to divide (and multiply) by 32768).
*
* COPYRIGHT 1999-2015 Stephan M. Bernsee <s.bernsee [AT] zynaptiq [DOT] com>
*
* The Wide Open License (WOL)
*
* Permission to use, copy, modify, distribute and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice and this license appear in all source copies.
* THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF
* ANY KIND. See http://www.dspguru.com/wol.htm for more information.
*
*****************************************************************************/
void PitchShifter::Process(float* buffer, int bufferSize)
{
PROFILER(PitchShifter);
const int fftFrameSize = mFFTBins;
const int sampleRate = gSampleRate;
const int osamp = mOversampling;
const int numSampsToProcess = bufferSize;
float* indata = buffer;
float* outdata = buffer;
const float pitchShift = mRatio;
double magn, phase, tmp, window, real, imag;
double freqPerBin, expct;
long i, k, qpd, index, inFifoLatency, stepSize, fftFrameSize2;
/* set up some handy variables */
fftFrameSize2 = fftFrameSize / 2;
stepSize = fftFrameSize / osamp;
freqPerBin = sampleRate / (double)fftFrameSize;
expct = 2. * M_PI * (double)stepSize / (double)fftFrameSize;
inFifoLatency = fftFrameSize - stepSize;
if (gRover == false)
gRover = inFifoLatency;
mLatency = inFifoLatency;
/* initialize our static arrays */
if (gInit == false)
{
memset(gInFIFO, 0, MAX_FRAME_LENGTH * sizeof(float));
memset(gOutFIFO, 0, MAX_FRAME_LENGTH * sizeof(float));
memset(gFFTworksp, 0, 2 * MAX_FRAME_LENGTH * sizeof(float));
memset(gLastPhase, 0, (MAX_FRAME_LENGTH / 2 + 1) * sizeof(float));
memset(gSumPhase, 0, (MAX_FRAME_LENGTH / 2 + 1) * sizeof(float));
memset(gOutputAccum, 0, 2 * MAX_FRAME_LENGTH * sizeof(float));
memset(gAnaFreq, 0, MAX_FRAME_LENGTH * sizeof(float));
memset(gAnaMagn, 0, MAX_FRAME_LENGTH * sizeof(float));
gInit = true;
}
/* main processing loop */
for (i = 0; i < numSampsToProcess; i++)
{
/* As long as we have not yet collected enough data just read in */
gInFIFO[gRover] = indata[i];
outdata[i] = gOutFIFO[gRover - inFifoLatency];
gRover++;
/* now we have enough data for processing */
if (gRover >= fftFrameSize)
{
gRover = inFifoLatency;
/* do windowing and re,im interleave */
for (k = 0; k < fftFrameSize; k++)
{
window = -.5 * cos(2. * M_PI * (double)k / (double)fftFrameSize) + .5;
gFFTworksp[2 * k] = gInFIFO[k] * window;
gFFTworksp[2 * k + 1] = 0.;
}
/* ***************** ANALYSIS ******************* */
/* do transform */
smbFft(gFFTworksp, fftFrameSize, -1);
/* this is the analysis step */
for (k = 0; k <= fftFrameSize2; k++)
{
/* de-interlace FFT buffer */
real = gFFTworksp[2 * k];
imag = gFFTworksp[2 * k + 1];
/* compute magnitude and phase */
magn = 2. * sqrt(real * real + imag * imag);
phase = atan2(imag, real);
/* compute phase difference */
tmp = phase - gLastPhase[k];
gLastPhase[k] = phase;
/* subtract expected phase difference */
tmp -= (double)k * expct;
/* map delta phase into +/- Pi interval */
qpd = tmp / M_PI;
if (qpd >= 0)
qpd += qpd & 1;
else
qpd -= qpd & 1;
tmp -= M_PI * (double)qpd;
/* get deviation from bin frequency from the +/- Pi interval */
tmp = osamp * tmp / (2. * M_PI);
/* compute the k-th partials' true frequency */
tmp = (double)k * freqPerBin + tmp * freqPerBin;
/* store magnitude and true frequency in analysis arrays */
gAnaMagn[k] = magn;
gAnaFreq[k] = tmp;
}
/* ***************** PROCESSING ******************* */
/* this does the actual pitch shifting */
memset(gSynMagn, 0, fftFrameSize * sizeof(float));
memset(gSynFreq, 0, fftFrameSize * sizeof(float));
for (k = 0; k <= fftFrameSize2; k++)
{
index = k * pitchShift;
if (index <= fftFrameSize2)
{
gSynMagn[index] += gAnaMagn[k];
gSynFreq[index] = gAnaFreq[k] * pitchShift;
}
}
/* ***************** SYNTHESIS ******************* */
/* this is the synthesis step */
for (k = 0; k <= fftFrameSize2; k++)
{
/* get magnitude and true frequency from synthesis arrays */
magn = gSynMagn[k];
tmp = gSynFreq[k];
/* subtract bin mid frequency */
tmp -= (double)k * freqPerBin;
/* get bin deviation from freq deviation */
tmp /= freqPerBin;
/* take osamp into account */
tmp = 2. * M_PI * tmp / osamp;
/* add the overlap phase advance back in */
tmp += (double)k * expct;
/* accumulate delta phase to get bin phase */
gSumPhase[k] += tmp;
phase = gSumPhase[k];
/* get real and imag part and re-interleave */
gFFTworksp[2 * k] = magn * cos(phase);
gFFTworksp[2 * k + 1] = magn * sin(phase);
}
/* zero negative frequencies */
for (k = fftFrameSize + 2; k < 2 * fftFrameSize; k++)
gFFTworksp[k] = 0.;
/* do inverse transform */
smbFft(gFFTworksp, fftFrameSize, 1);
/* do windowing and add to output accumulator */
for (k = 0; k < fftFrameSize; k++)
{
window = -.5 * cos(2. * M_PI * (double)k / (double)fftFrameSize) + .5;
gOutputAccum[k] += 2. * window * gFFTworksp[2 * k] / (fftFrameSize2 * osamp);
}
for (k = 0; k < stepSize; k++)
gOutFIFO[k] = gOutputAccum[k];
/* shift accumulator */
memmove(gOutputAccum, gOutputAccum + stepSize, fftFrameSize * sizeof(float));
/* move input FIFO */
for (k = 0; k < inFifoLatency; k++)
gInFIFO[k] = gInFIFO[k + stepSize];
}
}
}
#endif
|