File: PitchShifter.cpp

package info (click to toggle)
bespokesynth 1.3.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,716 kB
  • sloc: cpp: 117,136; ansic: 18,752; python: 593; xml: 74; makefile: 4
file content (467 lines) | stat: -rw-r--r-- 15,374 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/**
    bespoke synth, a software modular synthesizer
    Copyright (C) 2021 Ryan Challinor (contact: awwbees@gmail.com)

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
**/
//
//  PitchShifter.cpp
//  Bespoke
//
//  Created by Ryan Challinor on 3/21/15.
//
//

#include "PitchShifter.h"
#include "SynthGlobals.h"
#include "Profiler.h"

#include <cstring>

PitchShifter::PitchShifter(int fftBins)
: mFFTBins(fftBins)
, mFFT(mFFTBins)
, mRollingInputBuffer(mFFTBins)
, mRollingOutputBuffer(mFFTBins)
, mFFTData(mFFTBins, mFFTBins / 2 + 1)
{
   // Generate a window with a single raised cosine from N/4 to 3N/4
   mWindower = new float[mFFTBins];
   for (int i = 0; i < mFFTBins; ++i)
      mWindower[i] = -.5 * cos(FTWO_PI * i / mFFTBins) + .5;
   mLastPhase = new float[mFFTBins / 2 + 1];
   mSumPhase = new float[mFFTBins / 2 + 1];
   mAnalysisMag = new float[mFFTBins];
   mAnalysisFreq = new float[mFFTBins];
   mSynthesisMag = new float[mFFTBins];
   mSynthesisFreq = new float[mFFTBins];
}

PitchShifter::~PitchShifter()
{
   delete[] mLastPhase;
   delete[] mSumPhase;
   delete[] mWindower;
   delete[] mAnalysisMag;
   delete[] mAnalysisFreq;
   delete[] mSynthesisMag;
   delete[] mSynthesisFreq;
}

#define MY_PITCHSHIFTER 0

#if MY_PITCHSHIFTER

void PitchShifter::Process(float* buffer, int bufferSize)
{
   PROFILER(PitchShifter);

   const int osamp = mOversampling;
   const int stepSize = mFFTBins / osamp;
   const double expct = 2. * M_PI * (double)stepSize / (double)mFFTBins;
   const double freqPerBin = gSampleRate / (double)mFFTBins;

   mLatency = mFFTBins - stepSize;

   mRollingInputBuffer.WriteChunk(buffer, bufferSize, 0);

   //copy rolling input buffer into working buffer and window it
   mRollingInputBuffer.ReadChunk(mFFTData.mTimeDomain, mFFTBins, latency);
   Mult(mFFTData.mTimeDomain, mWindower, mFFTBins);

   mFFT.Forward(mFFTData.mTimeDomain,
                mFFTData.mRealValues,
                mFFTData.mImaginaryValues);

   const int fftFrameSize2 = mFFTBins / 2;

   // this is the analysis step
   for (int k = 0; k <= fftFrameSize2; k++)
   {
      // de-interlace FFT buffer
      float real = mFFTData.mRealValues[k];
      float imag = mFFTData.mImaginaryValues[k];

      // compute magnitude and phase
      double mag = 2. * sqrt(real * real + imag * imag);
      double phase = atan2(imag, real);

      // compute phase difference
      double diff = phase - mLastPhase[k];
      mLastPhase[k] = phase;

      // subtract expected phase difference
      diff -= (double)k * expct;

      // map delta phase into +/- Pi interval
      long qpd = diff / M_PI;
      if (qpd >= 0)
         qpd += qpd & 1;
      else
         qpd -= qpd & 1;
      diff -= M_PI * (double)qpd;

      // get deviation from bin frequency from the +/- Pi interval
      double deviation = osamp * diff / (2. * M_PI);

      // compute the k-th partials' true frequency
      double freq = (double)k * freqPerBin + deviation * freqPerBin;

      // store magnitude and true frequency in analysis arrays
      mAnalysisMag[k] = mag;
      mAnalysisFreq[k] = freq;
   }

   // this does the actual pitch shifting
   memset(mSynthesisMag, 0, mFFTBins * sizeof(float));
   memset(mSynthesisFreq, 0, mFFTBins * sizeof(float));
   for (int k = 0; k <= fftFrameSize2; k++)
   {
      int index = k * mRatio;
      if (index <= fftFrameSize2)
      {
         mSynthesisMag[index] += mAnalysisMag[k];
         mSynthesisFreq[index] = mAnalysisFreq[k] * mRatio;
      }
   }

   // this is the synthesis step
   for (int k = 0; k <= fftFrameSize2; k++)
   {
      // get magnitude and true frequency from synthesis arrays
      double mag = mSynthesisMag[k];
      double tmp = mSynthesisFreq[k];

      // subtract bin mid frequency
      tmp -= (double)k * freqPerBin;

      // get bin deviation from freq deviation
      tmp /= freqPerBin;

      // take osamp into account
      tmp = 2. * M_PI * tmp / osamp;

      // add the overlap phase advance back in
      tmp += (double)k * expct;

      // accumulate delta phase to get bin phase
      mSumPhase[k] += tmp;
      double phase = mSumPhase[k];

      // get real and imag part and re-interleave
      mFFTData.mRealValues[k + 1] = mag * cos(phase);
      mFFTData.mImaginaryValues[k + 1] = mag * sin(phase);
   }

   mFFT.Inverse(mFFTData.mRealValues,
                mFFTData.mImaginaryValues,
                mFFTData.mTimeDomain);

   for (int i = 0; i < bufferSize; ++i)
      mRollingOutputBuffer.Write(0);

   //copy rolling input buffer into working buffer and window it
   for (int i = 0; i < mFFTBins; ++i)
      mRollingOutputBuffer.Accum(mFFTBins - i, mFFTData.mTimeDomain[i] * mWindower[i] * .0001f);

   for (int i = 0; i < bufferSize; ++i)
      buffer[i] = mRollingOutputBuffer.GetSample(latency - i);
}

#else

void smbFft(float* fftBuffer, long fftFrameSize, long sign)
/*
	FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse)
	Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the
	time domain data in fftBuffer[0...2*fftFrameSize-1]. The FFT array takes
	and returns the cosine and sine parts in an interleaved manner, ie.
	fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize
	must be a power of 2. It expects a complex input signal (see footnote 2),
	ie. when working with 'common' audio signals our input signal has to be
	passed as {in[0],0.,in[1],0.,in[2],0.,...} asf. In that case, the transform
	of the frequencies of interest is in fftBuffer[0...fftFrameSize].
 */
{
   float wr, wi, arg, *p1, *p2, temp;
   float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i;
   long i, bitm, j, le, le2, k;

   for (i = 2; i < 2 * fftFrameSize - 2; i += 2)
   {
      for (bitm = 2, j = 0; bitm < 2 * fftFrameSize; bitm <<= 1)
      {
         if (i & bitm)
            j++;
         j <<= 1;
      }
      if (i < j)
      {
         p1 = fftBuffer + i;
         p2 = fftBuffer + j;
         temp = *p1;
         *(p1++) = *p2;
         *(p2++) = temp;
         temp = *p1;
         *p1 = *p2;
         *p2 = temp;
      }
   }
   for (k = 0, le = 2; k < (long)(log(fftFrameSize) / log(2.) + .5); k++)
   {
      le <<= 1;
      le2 = le >> 1;
      ur = 1.0;
      ui = 0.0;
      arg = M_PI / (le2 >> 1);
      wr = cos(arg);
      wi = sign * sin(arg);
      for (j = 0; j < le2; j += 2)
      {
         p1r = fftBuffer + j;
         p1i = p1r + 1;
         p2r = p1r + le2;
         p2i = p2r + 1;
         for (i = j; i < 2 * fftFrameSize; i += le)
         {
            tr = *p2r * ur - *p2i * ui;
            ti = *p2r * ui + *p2i * ur;
            *p2r = *p1r - tr;
            *p2i = *p1i - ti;
            *p1r += tr;
            *p1i += ti;
            p1r += le;
            p1i += le;
            p2r += le;
            p2i += le;
         }
         tr = ur * wr - ui * wi;
         ui = ur * wi + ui * wr;
         ur = tr;
      }
   }
}

/****************************************************************************
 *
 * NAME: smbPitchShift.cpp
 * VERSION: 1.2
 * HOME URL: http://blogs.zynaptiq.com/bernsee
 * KNOWN BUGS: none
 *
 * SYNOPSIS: Routine for doing pitch shifting while maintaining
 * duration using the Short Time Fourier Transform.
 *
 * DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5
 * (one octave down) and 2. (one octave up). A value of exactly 1 does not change
 * the pitch. numSampsToProcess tells the routine how many samples in indata[0...
 * numSampsToProcess-1] should be pitch shifted and moved to outdata[0 ...
 * numSampsToProcess-1]. The two buffers can be identical (ie. it can process the
 * data in-place). fftFrameSize defines the FFT frame size used for the
 * processing. Typical values are 1024, 2048 and 4096. It may be any value <=
 * MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
 * oversampling factor which also determines the overlap between adjacent STFT
 * frames. It should at least be 4 for moderate scaling ratios. A value of 32 is
 * recommended for best quality. sampleRate takes the sample rate for the signal
 * in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in
 * indata[] should be in the range [-1.0, 1.0), which is also the output range
 * for the data, make sure you scale the data accordingly (for 16bit signed integers
 * you would have to divide (and multiply) by 32768).
 *
 * COPYRIGHT 1999-2015 Stephan M. Bernsee <s.bernsee [AT] zynaptiq [DOT] com>
 *
 * 						The Wide Open License (WOL)
 *
 * Permission to use, copy, modify, distribute and sell this software and its
 * documentation for any purpose is hereby granted without fee, provided that
 * the above copyright notice and this license appear in all source copies.
 * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF
 * ANY KIND. See http://www.dspguru.com/wol.htm for more information.
 *
 *****************************************************************************/

void PitchShifter::Process(float* buffer, int bufferSize)
{
   PROFILER(PitchShifter);

   const int fftFrameSize = mFFTBins;
   const int sampleRate = gSampleRate;
   const int osamp = mOversampling;
   const int numSampsToProcess = bufferSize;
   float* indata = buffer;
   float* outdata = buffer;
   const float pitchShift = mRatio;

   double magn, phase, tmp, window, real, imag;
   double freqPerBin, expct;
   long i, k, qpd, index, inFifoLatency, stepSize, fftFrameSize2;

   /* set up some handy variables */
   fftFrameSize2 = fftFrameSize / 2;
   stepSize = fftFrameSize / osamp;
   freqPerBin = sampleRate / (double)fftFrameSize;
   expct = 2. * M_PI * (double)stepSize / (double)fftFrameSize;
   inFifoLatency = fftFrameSize - stepSize;
   if (gRover == false)
      gRover = inFifoLatency;

   mLatency = inFifoLatency;

   /* initialize our static arrays */
   if (gInit == false)
   {
      memset(gInFIFO, 0, MAX_FRAME_LENGTH * sizeof(float));
      memset(gOutFIFO, 0, MAX_FRAME_LENGTH * sizeof(float));
      memset(gFFTworksp, 0, 2 * MAX_FRAME_LENGTH * sizeof(float));
      memset(gLastPhase, 0, (MAX_FRAME_LENGTH / 2 + 1) * sizeof(float));
      memset(gSumPhase, 0, (MAX_FRAME_LENGTH / 2 + 1) * sizeof(float));
      memset(gOutputAccum, 0, 2 * MAX_FRAME_LENGTH * sizeof(float));
      memset(gAnaFreq, 0, MAX_FRAME_LENGTH * sizeof(float));
      memset(gAnaMagn, 0, MAX_FRAME_LENGTH * sizeof(float));
      gInit = true;
   }

   /* main processing loop */
   for (i = 0; i < numSampsToProcess; i++)
   {
      /* As long as we have not yet collected enough data just read in */
      gInFIFO[gRover] = indata[i];
      outdata[i] = gOutFIFO[gRover - inFifoLatency];
      gRover++;

      /* now we have enough data for processing */
      if (gRover >= fftFrameSize)
      {
         gRover = inFifoLatency;

         /* do windowing and re,im interleave */
         for (k = 0; k < fftFrameSize; k++)
         {
            window = -.5 * cos(2. * M_PI * (double)k / (double)fftFrameSize) + .5;
            gFFTworksp[2 * k] = gInFIFO[k] * window;
            gFFTworksp[2 * k + 1] = 0.;
         }


         /* ***************** ANALYSIS ******************* */
         /* do transform */
         smbFft(gFFTworksp, fftFrameSize, -1);

         /* this is the analysis step */
         for (k = 0; k <= fftFrameSize2; k++)
         {
            /* de-interlace FFT buffer */
            real = gFFTworksp[2 * k];
            imag = gFFTworksp[2 * k + 1];

            /* compute magnitude and phase */
            magn = 2. * sqrt(real * real + imag * imag);
            phase = atan2(imag, real);

            /* compute phase difference */
            tmp = phase - gLastPhase[k];
            gLastPhase[k] = phase;

            /* subtract expected phase difference */
            tmp -= (double)k * expct;

            /* map delta phase into +/- Pi interval */
            qpd = tmp / M_PI;
            if (qpd >= 0)
               qpd += qpd & 1;
            else
               qpd -= qpd & 1;
            tmp -= M_PI * (double)qpd;

            /* get deviation from bin frequency from the +/- Pi interval */
            tmp = osamp * tmp / (2. * M_PI);

            /* compute the k-th partials' true frequency */
            tmp = (double)k * freqPerBin + tmp * freqPerBin;

            /* store magnitude and true frequency in analysis arrays */
            gAnaMagn[k] = magn;
            gAnaFreq[k] = tmp;
         }

         /* ***************** PROCESSING ******************* */
         /* this does the actual pitch shifting */
         memset(gSynMagn, 0, fftFrameSize * sizeof(float));
         memset(gSynFreq, 0, fftFrameSize * sizeof(float));
         for (k = 0; k <= fftFrameSize2; k++)
         {
            index = k * pitchShift;
            if (index <= fftFrameSize2)
            {
               gSynMagn[index] += gAnaMagn[k];
               gSynFreq[index] = gAnaFreq[k] * pitchShift;
            }
         }

         /* ***************** SYNTHESIS ******************* */
         /* this is the synthesis step */
         for (k = 0; k <= fftFrameSize2; k++)
         {
            /* get magnitude and true frequency from synthesis arrays */
            magn = gSynMagn[k];
            tmp = gSynFreq[k];

            /* subtract bin mid frequency */
            tmp -= (double)k * freqPerBin;

            /* get bin deviation from freq deviation */
            tmp /= freqPerBin;

            /* take osamp into account */
            tmp = 2. * M_PI * tmp / osamp;

            /* add the overlap phase advance back in */
            tmp += (double)k * expct;

            /* accumulate delta phase to get bin phase */
            gSumPhase[k] += tmp;
            phase = gSumPhase[k];

            /* get real and imag part and re-interleave */
            gFFTworksp[2 * k] = magn * cos(phase);
            gFFTworksp[2 * k + 1] = magn * sin(phase);
         }

         /* zero negative frequencies */
         for (k = fftFrameSize + 2; k < 2 * fftFrameSize; k++)
            gFFTworksp[k] = 0.;

         /* do inverse transform */
         smbFft(gFFTworksp, fftFrameSize, 1);

         /* do windowing and add to output accumulator */
         for (k = 0; k < fftFrameSize; k++)
         {
            window = -.5 * cos(2. * M_PI * (double)k / (double)fftFrameSize) + .5;
            gOutputAccum[k] += 2. * window * gFFTworksp[2 * k] / (fftFrameSize2 * osamp);
         }
         for (k = 0; k < stepSize; k++)
            gOutFIFO[k] = gOutputAccum[k];

         /* shift accumulator */
         memmove(gOutputAccum, gOutputAccum + stepSize, fftFrameSize * sizeof(float));

         /* move input FIFO */
         for (k = 0; k < inFifoLatency; k++)
            gInFIFO[k] = gInFIFO[k + stepSize];
      }
   }
}

#endif