File: Vocoder.cpp

package info (click to toggle)
bespokesynth 1.3.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,716 kB
  • sloc: cpp: 117,136; ansic: 18,752; python: 593; xml: 74; makefile: 4
file content (264 lines) | stat: -rw-r--r-- 8,120 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/**
    bespoke synth, a software modular synthesizer
    Copyright (C) 2021 Ryan Challinor (contact: awwbees@gmail.com)

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
**/
//
//  Vocoder.cpp
//  modularSynth
//
//  Created by Ryan Challinor on 4/17/13.
//
//

#include "Vocoder.h"
#include "ModularSynth.h"
#include "Profiler.h"

Vocoder::Vocoder()
: IAudioProcessor(gBufferSize)
{
   // Generate a window with a single raised cosine from N/4 to 3N/4
   mWindower = new float[VOCODER_WINDOW_SIZE];
   for (int i = 0; i < VOCODER_WINDOW_SIZE; ++i)
      mWindower[i] = -.5 * cos(FTWO_PI * i / VOCODER_WINDOW_SIZE) + .5;

   mCarrierInputBuffer = new float[GetBuffer()->BufferSize()];
   Clear(mCarrierInputBuffer, GetBuffer()->BufferSize());

   AddChild(&mGate);
   mGate.SetPosition(110, 20);
   mGate.SetEnabled(false);
}

void Vocoder::CreateUIControls()
{
   IDrawableModule::CreateUIControls();
   mInputSlider = new FloatSlider(this, "input", 5, 29, 100, 15, &mInputPreamp, 0, 2);
   mCarrierSlider = new FloatSlider(this, "carrier", 5, 47, 100, 15, &mCarrierPreamp, 0, 2);
   mVolumeSlider = new FloatSlider(this, "volume", 5, 65, 100, 15, &mVolume, 0, 2);
   mDryWetSlider = new FloatSlider(this, "dry/wet", 5, 83, 100, 15, &mDryWet, 0, 1);
   mFricativeSlider = new FloatSlider(this, "fric thresh", 5, 101, 100, 15, &mFricativeThresh, 0, 1);
   mWhisperSlider = new FloatSlider(this, "whisper", 5, 119, 100, 15, &mWhisper, 0, 1);
   mPhaseOffsetSlider = new FloatSlider(this, "phase off", 5, 137, 100, 15, &mPhaseOffset, 0, FTWO_PI);
   mCutSlider = new IntSlider(this, "cut", 5, 155, 100, 15, &mCut, 0, 100);

   mGate.CreateUIControls();
}

Vocoder::~Vocoder()
{
   delete[] mWindower;
   delete[] mCarrierInputBuffer;
}

void Vocoder::SetCarrierBuffer(float* carrier, int bufferSize)
{
   assert(bufferSize == GetBuffer()->BufferSize());
   BufferCopy(mCarrierInputBuffer, carrier, bufferSize);
   mCarrierDataSet = true;
}

void Vocoder::Process(double time)
{
   PROFILER(Vocoder);

   IAudioReceiver* target = GetTarget();

   if (target == nullptr)
      return;

   SyncBuffers();

   if (!mEnabled)
   {
      for (int ch = 0; ch < GetBuffer()->NumActiveChannels(); ++ch)
      {
         Add(target->GetBuffer()->GetChannel(ch), GetBuffer()->GetChannel(ch), GetBuffer()->BufferSize());
         GetVizBuffer()->WriteChunk(GetBuffer()->GetChannel(ch), GetBuffer()->BufferSize(), ch);
      }

      GetBuffer()->Reset();
      return;
   }

   ComputeSliders(0);

   float inputPreampSq = mInputPreamp * mInputPreamp;
   float carrierPreampSq = mCarrierPreamp * mCarrierPreamp;
   float volSq = mVolume * mVolume;

   int bufferSize = GetBuffer()->BufferSize();

   int zerox = 0; //count up zero crossings
   bool positive = true;
   for (int i = 0; i < bufferSize; ++i)
   {
      if ((GetBuffer()->GetChannel(0)[i] < 0 && positive) ||
          (GetBuffer()->GetChannel(0)[i] > 0 && !positive))
      {
         ++zerox;
         positive = !positive;
      }
   }
   bool fricative = zerox > (bufferSize * mFricativeThresh); //if a % of the samples are zero crossings, this is a fricative
   if (fricative)
      mFricDetected = true; //draw that we detected a fricative

   mGate.ProcessAudio(time, GetBuffer());

   mRollingInputBuffer.WriteChunk(GetBuffer()->GetChannel(0), bufferSize, 0);

   //copy rolling input buffer into working buffer and window it
   mRollingInputBuffer.ReadChunk(mFFTData.mTimeDomain, VOCODER_WINDOW_SIZE, 0, 0);
   Mult(mFFTData.mTimeDomain, mWindower, VOCODER_WINDOW_SIZE);
   Mult(mFFTData.mTimeDomain, inputPreampSq, VOCODER_WINDOW_SIZE);

   mFFT.Forward(mFFTData.mTimeDomain,
                mFFTData.mRealValues,
                mFFTData.mImaginaryValues);

   if (!fricative)
   {
      mRollingCarrierBuffer.WriteChunk(mCarrierInputBuffer, bufferSize, 0);
   }
   else
   {
      //use noise as carrier signal if it's a fricative
      //but make the noise the same-ish volume as input carrier
      for (int i = 0; i < bufferSize; ++i)
         mRollingCarrierBuffer.Write(mCarrierInputBuffer[gRandom() % bufferSize] * 2, 0);
   }

   //copy rolling carrier buffer into working buffer and window it
   mRollingCarrierBuffer.ReadChunk(mCarrierFFTData.mTimeDomain, VOCODER_WINDOW_SIZE, 0, 0);
   Mult(mCarrierFFTData.mTimeDomain, mWindower, VOCODER_WINDOW_SIZE);
   Mult(mCarrierFFTData.mTimeDomain, carrierPreampSq, VOCODER_WINDOW_SIZE);

   mFFT.Forward(mCarrierFFTData.mTimeDomain,
                mCarrierFFTData.mRealValues,
                mCarrierFFTData.mImaginaryValues);

   for (int i = 0; i < FFT_FREQDOMAIN_SIZE; ++i)
   {
      float real = mFFTData.mRealValues[i];
      float imag = mFFTData.mImaginaryValues[i];

      //cartesian to polar
      float amp = 2. * sqrtf(real * real + imag * imag);
      //float phase = atan2(imag,real);

      float carrierReal = mCarrierFFTData.mRealValues[i];
      float carrierImag = mCarrierFFTData.mImaginaryValues[i];

      //cartesian to polar
      float carrierAmp = 2. * sqrtf(carrierReal * carrierReal + carrierImag * carrierImag);
      float carrierPhase = atan2(carrierImag, carrierReal);

      amp *= carrierAmp;
      float phase = carrierPhase;

      phase += ofRandom(mWhisper * FTWO_PI);
      mPhaseOffsetSlider->Compute();
      phase = FloatWrap(phase + mPhaseOffset, FTWO_PI);

      if (i < mCut) //cut out superbass
         amp = 0;

      //polar to cartesian
      real = amp * cos(phase);
      imag = amp * sin(phase);

      mFFTData.mRealValues[i] = real;
      mFFTData.mImaginaryValues[i] = imag;
   }

   mFFT.Inverse(mFFTData.mRealValues,
                mFFTData.mImaginaryValues,
                mFFTData.mTimeDomain);

   for (int i = 0; i < bufferSize; ++i)
      mRollingOutputBuffer.Write(0, 0);

   //copy rolling input buffer into working buffer and window it
   for (int i = 0; i < VOCODER_WINDOW_SIZE; ++i)
      mRollingOutputBuffer.Accum(VOCODER_WINDOW_SIZE - i - 1, mFFTData.mTimeDomain[i] * mWindower[i] * .0001f, 0);

   Mult(GetBuffer()->GetChannel(0), (1 - mDryWet) * inputPreampSq, GetBuffer()->BufferSize());

   for (int i = 0; i < bufferSize; ++i)
      GetBuffer()->GetChannel(0)[i] += mRollingOutputBuffer.GetSample(VOCODER_WINDOW_SIZE - i - 1, 0) * volSq * mDryWet;

   Add(target->GetBuffer()->GetChannel(0), GetBuffer()->GetChannel(0), bufferSize);

   GetVizBuffer()->WriteChunk(GetBuffer()->GetChannel(0), bufferSize, 0);

   GetBuffer()->Reset();
}

void Vocoder::DrawModule()
{
   if (Minimized() || IsVisible() == false)
      return;

   if (!mCarrierDataSet)
   {
      ofPushStyle();
      ofSetColor(255, 0, 0);
      DrawTextNormal("no vocodercarrier!", 5, 15);
      ofPopStyle();
   }

   mInputSlider->Draw();
   mCarrierSlider->Draw();
   mVolumeSlider->Draw();
   mDryWetSlider->Draw();
   mFricativeSlider->Draw();
   mWhisperSlider->Draw();
   mPhaseOffsetSlider->Draw();
   mCutSlider->Draw();

   if (mFricDetected)
   {
      ofPushStyle();
      ofFill();
      ofSetColor(255, 0, 0, gModuleDrawAlpha * .4f);
      ofRect(5, 101, 100, 14);
      ofPopStyle();
      mFricDetected = false;
   }

   mGate.Draw();
}

void Vocoder::CheckboxUpdated(Checkbox* checkbox, double time)
{
   if (checkbox == mEnabledCheckbox)
   {
      mGate.SetEnabled(mEnabled);
   }
}

void Vocoder::LoadLayout(const ofxJSONElement& moduleInfo)
{
   mModuleSaveData.LoadString("target", moduleInfo);

   SetUpFromSaveData();
}

void Vocoder::SetUpFromSaveData()
{
   SetTarget(TheSynth->FindModule(mModuleSaveData.GetString("target")));
}